Iridology is a technique in science used to analyze color, patterns, and various other properties of the iris to assess an individual's general health. Few regions in the iris are connected by nerves coming from different organs of body, this shows some special unique qualities which is advantageous along with which assist in psychological condition, particular organ conditions and construction of the body. The structural and designed patterns present on specific part of iris represent the level of intensity of disorder caused by the organs. This method of approach can be employed as reasonable and logical guidelines for the detection and identification of disorders. Therefore, after scanning the image of iris advance study of disorder can be carried out for detecting the condition of organ. Initially by the service of an adaptive histogram, the image of eye should be separated from part of the image captured. Next the images of iris are classified and recognized using machine learning algorithm Support Vector machine or Support Vector Networks. The features are extracted from images of iris using white Gaussian filters which are then used as a feature descriptor. These descriptors count the occurrences of gradient orientation and magnitude in localized portions of an image. Then convert the image of iris to a gray scaled image, final image is standardized. Next is to convert it into rectangular shape and then assembling the HMM images of eyes related to the kidney. The final level is to diagnose the edge of image of iris HMM. By analysing end results, condition of the organ can be diagnosed and results can be obtained from the iris recognition system.
Iridology is a technique in science used to analyze color, patterns, and various other properties of the iris to assess an individual's general health. Few regions in the iris are connected by nerves coming from different organs of body, this shows some special unique qualities which is advantageous along with which assist in psychological condition, particular organ conditions and construction of the body. The structural and designed patterns present on specific part of iris represent the level of intensity of disorder caused by the organs. This method of approach can be employed as reasonable and logical guidelines for the detection and identification of disorders. Therefore, after scanning the image of iris advance study of disorder can be carried out for detecting the condition of organ. Initially by the service of an adaptive histogram, the image of eye should be separated from part of the image captured. Next the images of iris are classified and recognized using machine learning algorithm Support Vector machine or Support Vector Networks. The features are extracted from images of iris using white Gaussian filters which are then used as a feature descriptor. These descriptors count the occurrences of gradient orientation and magnitude in localized portions of an image. Then convert the image of iris to a gray scaled image, final image is standardized. Next is to convert it into rectangular shape and then assembling the HMM images of eyes related to the kidney. The final level is to diagnose the edge of image of iris HMM. By analysing end results, condition of the organ can be diagnosed and results can be obtained from the iris recognition system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.