Background Antimicrobial resistance (AMR) poses a major threat to human health around the world. Previous publications have estimated the effect of AMR on incidence, deaths, hospital length of stay, and health-care costs for specific pathogen-drug combinations in select locations. To our knowledge, this study presents the most comprehensive estimates of AMR burden to date. MethodsWe estimated deaths and disability-adjusted life-years (DALYs) attributable to and associated with bacterial AMR for 23 pathogens and 88 pathogen-drug combinations in 204 countries and territories in 2019. We obtained data from systematic literature reviews, hospital systems, surveillance systems, and other sources, covering 471 million individual records or isolates and 7585 study-location-years. We used predictive statistical modelling to produce estimates of AMR burden for all locations, including for locations with no data. Our approach can be divided into five broad components: number of deaths where infection played a role, proportion of infectious deaths attributable to a given infectious syndrome, proportion of infectious syndrome deaths attributable to a given pathogen, the percentage of a given pathogen resistant to an antibiotic of interest, and the excess risk of death or duration of an infection associated with this resistance. Using these components, we estimated disease burden based on two counterfactuals: deaths attributable to AMR (based on an alternative scenario in which all drugresistant infections were replaced by drug-susceptible infections), and deaths associated with AMR (based on an alternative scenario in which all drug-resistant infections were replaced by no infection). We generated 95% uncertainty intervals (UIs) for final estimates as the 25th and 975th ordered values across 1000 posterior draws, and models were cross-validated for out-of-sample predictive validity. We present final estimates aggregated to the global and regional level. FindingsOn the basis of our predictive statistical models, there were an estimated 4•95 million (3•62-6•57) deaths associated with bacterial AMR in 2019, including 1•27 million (95% UI 0•911-1•71) deaths attributable to bacterial AMR. At the regional level, we estimated the all-age death rate attributable to resistance to be highest in western sub-Saharan Africa, at 27•3 deaths per 100 000 (20•9-35•3), and lowest in Australasia, at 6•5 deaths (4•3-9•4) per 100 000. Lower respiratory infections accounted for more than 1•5 million deaths associated with resistance in 2019, making it the most burdensome infectious syndrome. The six leading pathogens for deaths associated with resistance (Escherichia coli, followed by Staphylococcus aureus, Klebsiella pneumoniae, Streptococcus pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa) were responsible for 929 000 (660 000-1 270 000) deaths attributable to AMR and 3•57 million (2•62-4•78) deaths associated with AMR in 2019. One pathogen-drug combination, meticillinresistant S aureus, caused more than 100 000 deaths attributa...
The prevalence of mutations at amino acid (aa) position 315 in the katG gene of isoniazid (INH)-resistant Mycobacterium tuberculosis isolates in The Netherlands and the mutation's association with the level of INH resistance, multidrug resistance, and transmission were determined. Of 4288 M. tuberculosis isolates with available laboratory results, 295 (7%) exhibited INH resistance. Of 148 aa 315 mutants, 89% had MICs of 5-10 microg/mL, whereas 75% of the other 130 INH-resistant strains had MICs of 0.5-1 microg/mL. Of the aa 315 mutants, 33% exhibited monodrug resistance, compared with 69% of other INH-resistant strains (P<.0001). Multidrug resistance was found among 14% of the aa 315 mutants and 7% of the other INH-resistant strains (P>.05). The probability of being in an IS6110 DNA restriction fragment length polymorphism cluster was similar for aa 315 mutants and INH-susceptible strains, but the probability was reduced in other INH-resistant strains. Thus, aa 315 mutants lead to secondary cases of tuberculosis as often as INH-susceptible strains do.
Background Antimicrobial misuse is common in low-income and middle-income countries (LMICs), and this practice is a driver of antibiotic resistance. We compared community-based antibiotic access and use practices across communities in LMICs to identify contextually specific targets for interventions to improve antibiotic use practices. Methods We did quantitative and qualitative assessments of antibiotic access and use in six LMICs across Africa (Mozambique, Ghana, and South Africa) and Asia (Bangladesh, Vietnam, and Thailand) over a 2•5-year study period (July 1, 2016-Dec 31, 2018). We did quantitative assessments of community antibiotic access and use through supplier mapping, customer exit interviews, and household surveys. These quantitative assessments were triangulated with qualitative drug supplier and consumer interviews and discussions. Findings Vietnam and Bangladesh had the largest proportions of non-licensed antibiotic dispensing points. For mild illness, drug stores were the most common point of contact when seeking antibiotics in most countries, except South Africa and Mozambique, where public facilities were most common. Self-medication with antibiotics was found to be widespread in Vietnam (55•2% of antibiotics dispensed without prescription), Bangladesh (45•7%), and Ghana (36•1%), but less so in Mozambique (8•0%), South Africa (1•2%), and Thailand (3•9%). Self-medication was considered to be less time consuming, cheaper, and overall, more convenient than accessing them through healthcare facilities. Factors determining where treatment was sought often involved relevant policies, trust in the supplier and the drug, disease severity, and whether the antibiotic was intended for a child. Confusion regarding how to identify oral antibiotics was revealed in both Africa and Asia. Interpretation Contextual complexities and differences between countries with different incomes, policy frameworks, and cultural norms were revealed. These contextual differences render a single strategy inadequate and instead necessitate context-tailored, integrated intervention packages to improve antibiotic use in LMICs as part of global efforts to combat antibiotic resistance. Funding Wellcome Trust and Volkswagen Foundation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.