We formulate and theoretically analyze a mathematical model of COVID-19 transmission mechanism incorporating vital dynamics of the disease and two key therapeutic measures—vaccination of susceptible individuals and recovery/treatment of infected individuals. Both the disease-free and endemic equilibrium are globally asymptotically stable when the effective reproduction number R 0 v is, respectively, less or greater than unity. The derived critical vaccination threshold is dependent on the vaccine efficacy for disease eradication whenever R 0 v > 1 , even if vaccine coverage is high. Pontryagin’s maximum principle is applied to establish the existence of the optimal control problem and to derive the necessary conditions to optimally mitigate the spread of the disease. The model is fitted with cumulative daily Senegal data, with a basic reproduction number R 0 = 1.31 at the onset of the epidemic. Simulation results suggest that despite the effectiveness of COVID-19 vaccination and treatment to mitigate the spread of COVID-19, when R 0 v > 1 , additional efforts such as nonpharmaceutical public health interventions should continue to be implemented. Using partial rank correlation coefficients and Latin hypercube sampling, sensitivity analysis is carried out to determine the relative importance of model parameters to disease transmission. Results shown graphically could help to inform the process of prioritizing public health intervention measures to be implemented and which model parameter to focus on in order to mitigate the spread of the disease. The effective contact rate b , the vaccine efficacy ε , the vaccination rate v , the fraction of exposed individuals who develop symptoms, and, respectively, the exit rates from the exposed and the asymptomatic classes σ and ϕ are the most impactful parameters.
Tuberculosis and COVID-19 are among the diseases with major global public health concern and great socio-economic impact. Co-infection of these two diseases is inevitable due to their geographical overlap, a potential double blow as their clinical similarities could hamper strategies to mitigate their spread and transmission dynamics. To theoretically investigate the impact of control measures on their long-term dynamics, we formulate and analyze a mathematical model for the co-infection of COVID-19 and tuberculosis. Basic properties of the tuberculosis only and COVID-19 only sub-models are investigated as well as bifurcation analysis (possibility of the co-existence of the disease-free and endemic equilibria). The disease-free and endemic equilibria are globally asymptotically stable. The model is extended into an optimal control system by incorporating five control measures. These are: tuberculosis awareness campaign, prevention against COVID-19 (e.g., face mask, physical distancing), control against co-infection, tuberculosis and COVID-19 treatment. Five strategies which are combinations of the control measures are investigated. Strategy B which focuses on COVID-19 prevention, treatment and control of co-infection yields a better outcome in terms of the number of COVID-19 cases prevented at a lower percentage of the total cost of this strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.