Modern integrated circuit design manufacturing involves outsourcing intellectual property to third-party vendors to cut down on overall cost. Since there is a partial surrender of control, these third-party vendors may introduce malicious circuit commonly known as Hardware Trojan into the system in such a way that it goes undetected by the end-users' default security measures. Therefore, to mitigate the threat of functionality change caused by the Trojan, a technique is proposed based on the testability measures in gate level netlists using Machine Learning. The proposed technique detects the presence of Trojan from the gate-level description of nodes using controllability and observability values. Various Machine Learning models are implemented to classify the nodes as Trojan infected and non-infected. The efficiency of linear discriminant analysis obtains an accuracy of 92.85 %, precision of 99.9 %, recall of 80%, and F1 score of 88.8% with a latency of around 0.9 ms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.