Background. With soft-tissue sarcoma of the extremity (ESTS) representing a heterogenous group of tumors, management decisions are often made in multidisciplinary team (MDT) meetings. To optimize outcome, nomograms are more commonly used to guide individualized treatment decision making. Purpose. To evaluate the influence of Personalised Sarcoma Care (PERSARC) on treatment decisions for patients with high-grade ESTS and the ability of the MDT to accurately predict overall survival (OS) and local recurrence (LR) rates. Methods. Two consecutive meetings were organised. During the first meeting, 36 cases were presented to the MDT. OS and LR rates without the use of PERSARC were estimated by consensus and preferred treatment was recorded for each case. During the second meeting, OS/LR rates calculated with PERSARC were presented to the MDT. Differences between estimated OS/LR rates and PERSARC OS/LR rates were calculated. Variations in preferred treatment protocols were noted. Results. The MDT underestimated OS when compared to PERSARC in 48.4% of cases. LR rates were overestimated in 41.9% of cases. With the use of PERSARC, the proposed treatment changed for 24 cases. Conclusion. PERSARC aids the MDT to optimize individualized predicted OS and LR rates, hereby guiding patient-centered care and shared decision making.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.