Aims The large monophyletic genus Mimosa comprises approx. 500 species, most of which are native to the New World, with Central Brazil being the main centre of radiation. All Brazilian Mimosa spp. so far examined are nodulated by rhizobia in the betaproteobacterial genus Burkholderia. Approximately 10 Mya, transoceanic dispersal resulted in the Indian subcontinent hosting up to six endemic Mimosa spp. The nodulation ability and rhizobial symbionts of two of these, M. hamata and M. himalayana, both from north-west India, are here examined, and compared with those of M. pudica, an invasive species. † Methods Nodules were collected from several locations, and examined by light and electron microscopy. Rhizobia isolated from them were characterized in terms of their abilities to nodulate the three Mimosa hosts. The molecular phylogenetic relationships of the rhizobia were determined by analysis of 16S rRNA, nifH and nodA gene sequences. † Key Results Both native Indian Mimosa spp. nodulated effectively in their respective rhizosphere soils. Based on 16S rRNA, nifH and nodA sequences, their symbionts were identified as belonging to the alphaproteobacterial genus Ensifer, and were closest to the 'Old World' Ensifer saheli, E. kostiensis and E. arboris. In contrast, the invasive M. pudica was predominantly nodulated by Betaproteobacteria in the genera Cupriavidus and Burkholderia. All rhizobial strains tested effectively nodulated their original hosts, but the symbionts of the native species could not nodulate M. pudica. † Conclusions The native Mimosa spp. in India are not nodulated by the Burkholderia symbionts of their South American relatives, but by a unique group of alpha-rhizobial microsymbionts that are closely related to the 'local' Old World Ensifer symbionts of other mimosoid legumes in north-west India. They appear not to share symbionts with the invasive M. pudica, symbionts of which are mostly beta-rhizobial.
Nitrogen-fixing symbiosis is globally important in ecosystem functioning and agriculture, yet the evolutionary history of nodulation remains the focus of considerable debate. Recent evidence suggesting a single origin of nodulation followed by massive parallel evolutionary losses raises questions about why a few lineages in the N 2 -fixing clade retained nodulation and diversified as stable nodulators, while most did not. Within legumes, nodulation is restricted to the two most diverse subfamilies, Papilionoideae and Caesalpinioideae, which show stable retention of nodulation across their core clades.We characterize two nodule anatomy types across 128 species in 56 of the 152 genera of the legume subfamily Caesalpinioideae: fixation thread nodules (FTs), where nitrogen-fixing bacteroids are retained within the apoplast in modified infection threads, and symbiosomes, where rhizobia are symplastically internalized in the host cell cytoplasm within membranebound symbiosomes (SYMs).Using a robust phylogenomic tree based on 997 genes from 147 Caesalpinioideae genera, we show that losses of nodulation are more prevalent in lineages with FTs than those with SYMs.We propose that evolution of the symbiosome allows for a more intimate and enduring symbiosis through tighter compartmentalization of their rhizobial microsymbionts, resulting in greater evolutionary stability of nodulation across this species-rich pantropical legume clade.
Nodules of Chamaecrista pumila growing in several locations in India were sampled for anatomical studies and for characterization of their rhizobial microsymbionts. Regardless of their region of origin, the nodules were indeterminate with their bacteroids contained within symbiosomes which were surrounded by pectin. More than 150 strains were isolated from alkaline soils from the Thar Desert (Rajasthan), wet-acidic soils of Shillong (Meghalaya), and from trap experiments using soils from four other states with different agro-ecological regions. Molecular phylogenetic analysis based on five housekeeping (rrs, recA, glnII, dnaK andatpD) and two symbiotic (nodA and nifH) genes was performed for selected strains. Chamaecrista pumila was shown to be nodulated by niche-specific diverse strains of either Ensifer or Bradyrhizobium in alkaline (Thar Desert) to neutral (Tamil Nadu) soils and only Bradyrhizobium strains in acidic (Shillong) soils. Concatenated core gene phylogenies showed four novel Ensifer-MLSA types and nine Bradyrhizobium-MLSA types. Genetically diverse Ensifer strains harbored similar sym genes which were novel. In contrast, significant symbiotic diversity was observed in the Bradyrhizobium strains. The C. pumila strains cross-nodulated Vigna radiata and some wild papilionoid and mimosoid legumes. It is suggested that soil pH and moisture level played important roles in structuring the C. pumila microsymbiont community.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.