The main objective of intersection design is to facilitate the convenience, comfort, and safety of people traversing the intersection by enhancing the efficient movement of road users. The intersections on urban roads in India generally cater to heterogeneous motorized traffic, along with slow-moving traffic including pedestrians. It is therefore necessary to consider saturation flow for mixed traffic conditions to evaluate the overall operation of signalized intersections. A proper traffic model must consider varying characteristics of all the road users to effectively design and efficiently manage signalized intersections. This paper presents the results of the study on analyses of saturation flow rate conducted at signalized intersections with mixed traffic conditions in the city of Bangalore, India. Studies were carried out at 15 signalized intersections in the city of Bangalore with varying geometric factors such as width of road (w), gradient of the road (g), and turning radius (r) for right turning vehicles. Saturation flow rate computed as per Highway Capacity manual (HCM: 2000), Indonesian highway capacity manual (IHCM), and IRC SP: 41-1994 was compared with the field observations. The geometric factors, which affect the saturation flow, have been considered in this study and accordingly a new model has been proposed for determining saturation flow. It has been shown that by the introduction of the suggested adjustment factors in this paper, the saturation flow rate can give better picture of the field conditions, especially under heterogeneous traffic conditions of an urban area.
Expansive soils are problematic due to their swell—shrinkage behavior and low compressive strength. They are modified generally with additives such as lime, fly ash, and various other inorganic and organic materials. Chemical stabilization treatments can improve expansive soil properties for its reuse in geotechnical applications. The present study investigates the properties of two types of subgrade soil treated with Lime and compacted by three different methods in the laboratory. The study is mainly focused to bring out the effect of different methods of compaction on the unconfined compressive strength of Lime treated soils and untreated soils. Laboratory investigation included pH, Atterberg limits, cation exchange capacity (CEC), compaction, unconfined compression strength (UCS), California Bearing Ratio (CBR), Scanning Electron Micrographs (SEM) and EDAX before and after lime treatment. Tests were performed on lime treated soils (2, 4, 6 and 8% of lime). The soil samples for unconfined compressive strength test were prepared by static, dynamic and roller compaction methods in the laboratory. Roller compaction was performed using indigenously fabricated Roller compactor cum Rutting Analyzer (RCRA). The results indicate that dry unit weight and UCS of roller compacted lime treated soil is lower than that of dynamic compacted soil. However, dry unit weight and UCS of lime treated roller compacted soil are closer to that of statically compacted soil. Cation exchange capacity of both soils before and after treatment with lime were examined, CEC reduced with increase in lime content.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.