The pathogenesis of nutcracker oesophagus (NE) and ineffective oesophageal motility (IEM) is unclear. Damage to the enteric nervous system or smooth muscle can cause oesophageal dysmotility. We tested the hypothesis that NE and IEM are associated with abnormal muscular or neural constituents of the oesophageal wall. Oesophageal manometry was performed in patients prior to total gastrectomy for gastric cancer. The oesophageal manometries were categorized as normal (n = 7), NE (n = 13), or IEM (n = 5). Histologic examination of oesophageal tissue obtained during surgery was performed after haematoxylin and eosin (H&E) and trichrome staining. Oesophageal innervation was examined after immunostaining for protein gene product-9.5 (PGP-9.5), choline acetyltransferase (ChAT) and neuronal nitric oxide synthase (nNOS). There were no significant differences in inner circular smooth muscle thickness or degree of fibrosis among the three groups. Severe muscle fibre loss was found in four of five patients with IEM. The density of PGP-9.5-reactive neural structures was not different among the three groups. The density of ChAT immunostaining in the myenteric plexus (MP) was significantly greater in patients with NE (P < 0.05) and the density of nNOS immunostaining in the circular muscle (CM) was significantly greater in IEM patients (P < 0.05). The ChAT/nNOS ratio in both MP and CM was significantly greater in NE patients. NE may result from an imbalance between the excitatory and inhibitory innervation of the oesophagus, because more than normal numbers of ChAT-positive myenteric neurones are seen in NE. Myopathy and/or increased number of nNOS neurones may contribute to the hypocontractile motor activity of IEM.
SUMMARY BackgroundSildenafil is an inhibitor of type 5 phosphodiesterase. It relaxes or inhibits contraction of smooth muscle by increasing cellular concentrations of cyclic guanosine monophosphate. Multichannel intraluminal impedance manometry/pH allow the precise evaluation of oesophageal bolus transit and acid/non-acid reflux.
Mosapride citrate (mosapride), a substituted benzamide, is a selective 5-HT(4) receptor agonist, and is known to have prokinetic properties on the stomach. However, it is unclear whether mosapride also has a prokinetic effect on the colon. We previously found that mosapride significantly shortened colonic transit time in the guinea-pig, an animal with a distribution of colonic 5-HT(4) receptors similar to that of a human. So, we aimed to separately evaluate the effect of mosapride on proximal and distal colonic motor function in the guinea-pig. Proximal (approximately 8 cm from the ileocolic junction) and distal colon (approximately 8 cm from the anus) were removed. Both ends of the colon were connected to a chamber containing a Krebs-Henseleit solution. To measure colonic transit time, artificial faeces were inserted into the oral side of the lumen and moved towards the anal side by intraluminal perfusion via a peristaltic pump. A total of 6 cm of transit was observed and time was measured in 2 cm increments. A tissue bath study, using electrical stimulation, was performed to estimate the contractile activity of the circular musculature of the colon. Immunohistochemical staining for 5-HT(4) receptors was performed in the myenteric plexus and circular muscle in both proximal and distal colon, and the stained area was measured using a microscope and computer software. Mosapride enhanced contraction at 10(-9) to 10(-7) mol L(-1), coinciding with rapid transit both in proximal and distal colon. This pattern was more prominent in proximal colon. At the high dose (10(-6) mol L(-1)) mosapride had little or no effect on colonic contraction. This stimulatory effect was attenuated by GR113808, atropine and tetrodotoxin. In the myenteric plexus, the density of 5-HT(4) receptors was significantly greater in the proximal colon than in the distal colon, but in circular muscle the density was greater in the distal colon. Thus, mosapride accelerates transit through increased contraction in the proximal colon more than distal colon. The different distribution of neuronal and muscular 5-HT(4) receptors may support these findings. Therefore, mosapride may be a useful alternative to tegaserod and cisapride for constipation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.