Two feed-forward equalizers are designed to improve high data rate signal transmission in backplanes. They are fabricated in 0.18m CMOS and 0.25-m SiGe BiCMOS technology respectively. The system specification for the two equalizers is similar and they both address 10-Gb/s data rate transmission. Analog multiplier cells, active delay units and output buffers comprise the building blocks of each FFE. A comparison of the two equalizers is conducted with reference to design topology. The impact of technology on key performance parameters such as delay and gain is discussed. When a 10-Gb/s non-return to zero signal is received through a 20-inch backplane, it is found that both equalizers successfully improve signal integrity by channel equalization. The BiCMOS FFE exhibits better performance as compared to the CMOS FFE but also dissipates more DC power.Index Terms -BiCMOS integrated circuits, data communication, delay lock loops, equalization, feedforward systems, intersymbol interference.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.