Résumé -Dérivation de l'équation d'énergie de l'écoulement huile-gaz dans des pipelines -Lors de la simulation d'un écoulement multiphasique huile-gaz dans une conduite, le calcul thermodynamique représente un processus important en interaction avec le calcul hydraulique ; il influence la convergence du programme et la précision des résultats. La forme de l'équation d'énergie constitue la clef du calcul thermodynamique. Basée sur l'équation d'énergie de l'écoulement huile-gaz dans un pipeline, la formule de chute de température explicite (ETDF ; Explicit Temperature Drop Formula) est dérivée pour un calcul de température d'état stable huile-gaz. Cette nouvelle équation d'énergie prend en compte de nombreux facteurs, tels que l'effet Joule-Thomson, le travail de pression, le travail de frottement, ainsi que l'incidence des ondulations de terrain et le transfert de chaleur avec le milieu extérieur le long de la ligne. Ainsi, il s'agit d'une forme globale de l'équation d'énergie, laquelle pourrait décrire précisément la réalité d'un pipeline à phases multiples. Pour cette raison, un certain nombre de points de vue de la littérature à propos du calcul de température d'un écoulement diphasique huile-gaz dans des pipelines sont passés en revue. L'élimination de la boucle d'itération de température et l'intégration de l'équation de température explicite, au lieu de l'équation d'énergie d'enthalpie, dans le calcul conjugué hydraulique et thermique, se sont avérées améliorer l'efficacité de l'algorithme. Le calcul a été appliqué non seulement au modèle de composants mais aussi au modèle Black-Oil. Ce modèle est incorporé respectivement dans le modèle de composants ainsi que le modèle Black-Oil et deux simulations sont effectuées sur deux pipelines en service, les pipelines multiphasiques Yingmai-Yaha et Lufeng ; les résultats de température sont comparés à la simulation calculée par OLGA et aux résultats mesurés. Il est montré que ce modèle a très bien simulé la distribution de températures. Enfin, on a analysé l'influence de la capacité thermique spécifique du pétrole et du gaz sur la température du mélange des fluides et l'influence de l'effet Joule-Thomson sur la répartition de température sur le pipeline. Il est montré que le coefficient de Joule-Thomson représente un facteur clef pour décrire correctement un écoulement diphasique huile-gaz. Oil & Gas Science and Technology -Rev. IFP Energies nouvelles, Vol. 68 (2013), No. 2, pp. 341-353 Copyright © 2012, IFP Energies nouvelles DOI: 10.2516/ogst/2012020 Oil & Gas Science and Technology -Rev. IFP Energies nouvelles, Vol. 68 (2013 Abstract -Energy Equation Derivation of the Oil-Gas Flow in Pipelines -In the simulation of oil-gas pipeline multiphase flow, thermodynamic computation is an important process interacting with the hydraulic calculation and it influences the convergence of the program and the accuracy of the results. The form of the energy equation is the key to the thermodynamic computation. Based on the energy equation of oil-gas flow in pipeline, the E...
The recent improvements in electron microscopy instrumentation have lead to the adoption of electron energy loss spectroscopy (EELS) beyond the traditional fields of applications related to chemical analysis of materials and biological structures. EELS is increasingly attracting the attention of the solidstate physics and nano-optics communities due to the unparalleled spatial and energy resolution of this technique. This growing interest is supported by recent publications showing the realization of atomicresolved spectroscopy in complex solids and over ten years of research by several groups around the world probing surface-plasmon resonances. In this presentation, we focus on examples of applications of spatially resolved EELS for the study of energy-related materials, mainly Li-based layered compounds, and complex oxides with potential electronic applications, showing how atomic resolved measurements provide insight into the macroscopic properties of these materials.The experimental work was carried out with an FEI Titan (80-300 Cubed) microscope equipped with an electron energy loss spectroscopy (EELS) system (Quantum 966) and a monochromator. Samples were prepared using a combination of focused ion beam milling (Zeiss NVision 40 FIB/SEM) with low energy Ar ion final polishing (Fischione "NanoMill" system), and more conventional methods such as grinding powders into electron transparent samples. We have probed the structure of Li-based layered compounds used for energy storage applications and a variety of oxides, some superconducting compounds, either in single crystal forms or produced as ultrathin films grown by pulsed laser deposition methods. For Li-based compounds, inert atmosphere handling procedures were followed for transferring samples from a glove box system to the transmission electron microscope using a vacuum transfer holder.We have investigated a number of technologically relevant structures based on the LiNi x Mn y Co 1-x-y O 2 (known as "NMC") cathode materials, high-Li content phases (the so-called "high-energy" NMC phases), and cathode materials with coatings produced by Atomic Layer Deposition (ALD) method. In these systems, we have shown that the valence of transition metal ions, and the charge compensation mechanisms, can be effectively probed in pristine materials and cathodes that have been electrochemically cycled [1]. We demonstrate that the valence can be mapped effectively using a combination of spectra from reference compounds and statistical methods implemented to extract "phase" information with much reduced noise level in the spectra. From a practical point of view, we also show that this approach can be used to understand the evolution and degradation of these electrode materials under different electrochemical cycling conditions [2]. In the high-energy NMC compounds, we highlight how atomic-resolved mapping can be used to detect the presence of few atomic layers surface segregation of the transition metal atoms and changes in the local electronic structure of this material ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.