The Simons Observatory (SO) is a new cosmic microwave background experiment being built on Cerro Toco in Chile, due to begin observations in the early 2020s. We describe the scientific goals of the experiment, motivate the design, and forecast its performance. SO will measure the temperature and polarization anisotropy of the cosmic microwave background in six frequency bands centered at: 27, 39, 93, 145, 225 and 280 GHz. The initial configuration of SO will have three small-aperture 0.5-m telescopes and one large-aperture 6-m telescope, with a total of 60,000 cryogenic bolometers. Our key science goals are to characterize the primordial perturbations, measure the number of relativistic species and the mass of neutrinos, test for deviations from a cosmological constant, improve our understanding of galaxy evolution, and constrain the duration of reionization. The small aperture telescopes will target the largest angular scales observable from Chile, mapping ≈ 10% of the sky to a white noise level of 2 µK-arcmin in combined 93 and 145 GHz bands, to measure the primordial tensor-to-scalar ratio, r, at a target level of σ(r) = 0.003. The large aperture telescope will map ≈ 40% of the sky at arcminute angular resolution to an expected white noise level of 6 µK-arcmin in combined 93 and 145 GHz bands, overlapping with the majority of the Large Synoptic Survey Telescope sky region and partially with the Dark Energy Spectroscopic Instrument. With up to an order of magnitude lower polarization noise than maps from the Planck satellite, the high-resolution sky maps will constrain cosmological parameters derived from the damping tail, gravitational lensing of the microwave background, the primordial bispectrum, and the thermal and kinematic Sunyaev-Zel'dovich effects, and will aid in delensing the large-angle polarization signal to measure the tensorto-scalar ratio. The survey will also provide a legacy catalog of 16,000 galaxy clusters and more than 20,000 extragalactic sources a .
Abstract-This paper describes a method for designing cryogenic silicon-germanium (SiGe) transistor low-noise amplifiers and reports record microwave noise temperature, i.e., 2 K, measured at the module connector interface with a 50-generator. A theory for the relevant noise sources in the transistor is derived from first principles to give the minimum possible noise temperature and optimum generator impedance in terms of dc measured current gain and transconductance. These measured dc quantities are then reported for an IBM SiGe BiCMOS-8HP transistor at temperatures from 295 to 15 K. The measured and modeled noise and gain for both a single-and two-transistor cascode amplifier in the 0.2-3-GHz range are then presented. The noise model is then combined with the transistor equivalent-circuit elements in a circuit simulator and the noise in the frequency range up to 20 GHz is compared with that of a typical InP HEMT.
The production of the octet of baryons and mesons in e + e − collisions is analysed, based on considerations of SU(3) symmetry and a simple model for SU(3) symmetry breaking in fragmentation functions. All fragmentation functions, D h q (x, Q 2 ), describing the fragmentation of quarks into a member of the baryon octet (and similarly for fragmentation into members of the meson octet) are expressed in terms of three SU(3) symmetric functions, α(x, Q 2 ), β(x, Q 2 ), and γ(x, Q 2 ). With the introduction of an SU(3) breaking parameter, λ, the model is successful in describing hadroproduction data at the Z pole. The fragmentation functions are then evolved using leading order evolution equations and good fits to currently available data at 34 GeV and at 161 GeV are obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.