The photon counting efficiency of various CCD based cameras was studied as a function of xray energy and exposure. A pair of Spectral Instruments Model 800 CCD cameras fitted with 16 µm thick back-illuminated CCDs were calibrated at low x-ray energy using two well established histogram methods, a standard pixel for pixel histogram and the single pixel event histogram method. In addition, two new thick substrate CCDs were evaluated for use at high energy. One was a commercially available Princeton Instruments LCX1300 deep depletion CCD camera while the other was a custom designed 650 µm thick partially depleted CCD fitted to a SI 800 camera body. It is shown that at high x-ray energy, only a pixel-summing algorithm was able to derive spectral data due to the spreading of x-ray events over many pixels in the thicker substrate CCDs. This paper will describe the different algorithms used to extract spectra and the absolute detection efficiencies using these algorithms. These detectors will be very useful to detect high-energy x-ray photons from high-intensity short pulse laser interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.