Friction stir welding (FSW) is a novel solid state welding process for joining metallic alloys and has emerged as an alternative technology used in high strength alloys that are difficult to join with conventional techniques. The applications of FSW process are found in several industries such as aerospace, rail, automotive and marine industries for joining aluminium, magnesium and copper alloys. The FSW process parameters such as rotational speed, welding speed, axial force and attack angle play vital roles in the analysis of weld quality. The aim of this research study is to investigate the effects of different welding speeds and tool pin profiles on the weld quality of AA6082-O aluminium. This material has gathered wide acceptance in the fabrication of light weight structures requiring a high strength-to-weight ratio. Tri-flutes and taper screw thread pin are used as tool pin profiles in this research. The appearance of the weld is well and no obvious defect is found using these tools. Consequently, the obtained results explain the variation of stress as a function of strain and the effect of different welding speed and pin profiles on yield strength ultimate tensile strength and elongation. The friction stir welded plates of AA6082-O by using the taper screw thread pin profile reaches the ultimate tensile strength of 92.30% of the base metal ultimate strength and % elongation of 27.58%.
This paper reports hardness testing conducted on welded butt joints by FSW and TIG welding process on similar and dissimilar aluminium alloys. FSW joints were produced for similar alloys of AA7075T651 and dissimilar alloys of AA7075T651-AA6061T6. The Friction stir welds of AA7075 & AA6061 aluminium alloy were produced at different tool rotational speeds of 650,700, 800, 900, 1000 and transverse speed of 30, 35, 40 mm/min. TIG welding was conducted along the rolling direction of similar and dissimilar aluminium plates. The Brinell hardness testing techniques were employed to conduct the tests; these tests were conducted on the welds to ascertain the joint integrity before characterization to have an idea of the quality of the welds
The effect of processing parameters on the mechanical and metallurgical properties of dissimilar joints of AA6082-AA6061 produced by friction stir welding was analysed in this study. Different FSW samples were produced by varying the welding speeds of the tool as 50 and 62 mm/min and by varying the alloy positioned on the advancing side of the tool. In all the experiments the rotating speed is fixed at 1600rpm. All the welds were produced perpendicularly to the rolling direction for both the alloys. Microhardness (HV) and tensile tests performed at room temperature were used to evaluate the mechanical properties of the joints. In order to analyse the microstructural evolution of the material, the weld's cross-sections were observed optically and SEM observations were made of the fracture surfaces. The corrosion tests of base alloy and welded joints were carried out in 3.5%NaCl solution at a room temperature. Corrosion current and potential were determined using potentiostatic polarization measurements. It was found that the corrosion rates of welded joints were higher than that of base alloy.
Friction stir welding is a solid state innovative joining technique, widely being used for joining aluminium alloys in aerospace, marine automotive and many other applications of commercial importance. The welding parameters and tool pin profile play a major role in deciding the weld quality. In this paper, an attempt has been made to understand the influences of welding speed and pin profile of the tool on friction stir welded joints of AA6082-T6 alloy. Three different tool pin profiles (tapered cylindrical four flutes, triangular and hexagonal) have been used to fabricate the joints at different welding speeds in the range of 30 to 74 mm/min. Microhardness (HV) and tensile tests performed at room temperature were used to evaluate the mechanical properties of the joints. In order to analyse the microstructural evolution of the material, the weld’s cross-sections were observed optically and SEM observations were made of the fracture surfaces. From this investigation it is found that the hexagonal tool pin profile produces mechanically sound and metallurgically defect free welds compared to other tool pin profiles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.