Species of the genus Brachycephalus, have a snout-vent length of less than 18 mm and are believed to have evolved through miniaturization. Brachycephalus ephippium, is particularly interesting; because its entire skull is hyperossified, and the presacral vertebrae and transverse processes are covered by a dorsal shield. We demonstrate in this paper that, at the macroscopic level, a completely hyperossified skull and dorsal shield occur only in B. ephippium, but not in B. ferruginus, B. izechsohni, B. pernix, B. pombali, B. brunneus, B. didactylus, and B. hermogenesi. An intermediate condition, in which the skull is hyperossified but a dorsal shield is absent, occurs in B. vertebralis, B. nodoterga, B. pitanga, and B. alipioi. The microscopic structure of hyperossification was examined in skulls of B. ephippium and B. pitanga, revealing a complex organization involving the presence of Sharpey fibers, which in humans are characteristic of periodontal connections.
An X-ray transmission microtomography (CT) system combined with an X-ray fluorescence microtomography (XRFµCT) system was implemented in the Brazilian Synchrotron Light Laboratory (LNLS), Campinas, Brazil. The aim of this work was to determine the elemental distribution in biological samples (breast, prostate and lung samples) in order to verify the concentration of some elements correlated with characteristics and pathology of each tissue observed by the transmission CT. The experiments were performed at the X-ray fluorescence beamline (D09B-XRF) of the Brazilian Synchrotron Light Laboratory, Campinas, Brazil. A quasi-monochromatic beam produced by a multilayer monochromator was used as an incident beam. The sample was placed on a high-precision goniometer and translation stages that allow rotating as well as translating it perpendicularly to the beam. The fluorescence photons were collected with an energy dispersive HPGe detector placed at 90 • to the incident beam, while transmitted photons were detected with a fast Na(Tl) scintillation counter placed behind the sample on the beam path. The CT images were reconstructed using a filtered-back projection algorithm and the XRFµCT images were reconstructed using a filtered-back projection algorithm with absorption corrections. The 3D images were reconstructed using the 3D-DOCTOR software. Results from the 3D visualization showed that the distribution of iron, copper and zinc is different and heterogeneous from the analyzed samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.