We discuss hybrid atomistic-continuum methods for multiscale hydrodynamic applications. Both dense fluid and dilute gas formulations are considered. The choice of coupling method and its relation to the fluid physics is discussed. The differences in hybrid methods resulting from underlying compressible and incompressible continuum formulations as well as the importance of timescale decoupling are highlighted. We also discuss recently developed compressible and incompressible hybrid methods for dilute gases. The incompressible framework is based on the Schwarz alternating method whereas the compressible method is a multi-species, fully adaptive mesh and algorithm refinement approach which introduces the direct simulation Monte Carlo at the finest level of mesh refinement.
This paper presents data on turbulent-spot propagation in the hypersonic boundarylayer flow over a blunted cylindrical body. Data are based on the measurement of time-dependent surface heat transfer rates using gauges positioned as arrays in either the axial or transverse directions. These are used to provide data on individual spots, including sectional profiles, characteristic spot planform geometries, propagation speeds, growth rates and some information on the development of an internal thermal cell structure and corresponding thermal streaks in the base or calm region of the spot.
We present an adaptive mesh and algorithmic refinement (AMAR) scheme for modeling multi-scale hydrodynamics. The AMAR approach extends standard conservative adaptive mesh refinement (AMR) algorithms by providing a robust flux-based method for coupling an atomistic fluid representation to a continuum model. The atomistic model is applied locally in regions where the continuum description is invalid or inaccurate, such as near strong flow gradients and at fluid interfaces, or when the continuum grid is refined to the molecular scale. The need for such “hybrid” methods arises from the fact that hydrodynamics modeled by continuum representations are often under-resolved or inaccurate while solutions generated using molecular resolution globally are not feasible. In the implementation described herein, Direct Simulation Monte Carlo (DSMC) provides an atomistic description of the flow and the compressible two-fluid Euler equations serve as our continuum-scale model. The AMR methodology provides local grid refinement while the algorithm refinement feature allows the transition to DSMC where needed. The continuum and atomistic representations are coupled by matching fluxes at the continuum-atomistic interfaces and by proper averaging and interpolation of data between scales. Our AMAR application code is implemented in C++ and is built upon the SAMRAI (Structured Adaptive Mesh Refinement Application Infrastructure) framework developed at Lawrence Livermore National Laboratory. SAMRAI provides the parallel adaptive gridding algorithm and enables the coupling between the continuum and atomistic methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.