One of the advanced oxidative processes is gamma irradiation, an efficient technique for removing pesticides and pharmaceutical products. Radiolytic degradation leads to free radical's formation, which facilitates molecular lesion and breaks the chemical bonds. The use of pharmaceutical compounds, such as hydroxychloroquine (HCQ), is increasing nowadays due to the Covid 19 pandemic situation. This study focused on gamma radiation-induced degradation of HCQ in aqueous solution. The degradation was monitored by High-Performance Liquid Chromatography (HPLC) using an Eclipse XDB-C18 column (150 × 3.0 mm, 3.5 µm) and a mobile phase composed of 94% water (phosphate buffer at pH = 3.6) and 6% acetonitrile, with a DAD detection at λ = 343 nm. The effect of different gamma radiation doses (from 0.05 to 3 kGy) was investigated. Chromatographic analysis shows that 1 kGy dose is effective to degrade completely HCQ at 20 ppm and following a firstpseudo-kinetic order with a dose constant corresponding to 4.2 kGy −1 . A comparison was done between gamma degradation and other methods. LC-QToF-MS/MS identified the intermediate products, and their kinetic constants were determined. A mechanism pathway was proposed for HCQ degradation under gamma irradiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.