The evaluation of a production system to analyze greenhouse gases is one of the most interesting challenges for researchers. The aim of the present study is to model almond nut production based on inputs by employing artificial neural networks (ANNs) and adaptive neuro-fuzzy inference systems (ANFIS) procedures. To predict the almond nut yield with respect to the energy inputs, several ANN and ANFIS models were developed, evaluated, and compared. Among the several developed ANNs, a network with an architecture of 8-12-1 and a log-sigmoid, and a linear transfer function in the hidden and output layers, respectively, is found to be the best model. In general, both approaches had a good capability for predicting the nut yield. The comparison results revealed that the ANN procedure could predict the nut yield more precisely than the ANFIS models. Furthermore, greenhouse gas (GHG) emissions in almond orchards are determined where the total GHG emission is estimated to be about 2348.85 kg CO2eq ha−1. Among the inputs, electricity had the largest contribution to GHG emissions, with a share of 72.32%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.