Usually, in a fully grouted rock bolt pullout test the load-displacement curve of the rock bolt head is recorded. This paper presents an analytical method to use this curve for determining the bond (bolt-grout and grout-rock interface) shear strength parameters. For this purpose, the fully grouted rock bolt interaction with grout and surrounding rock in the pullout test is investigated and the load-displacement curve of the bolt head (beginning of the bonded section) is obtained analytically. For modeling the bolt-grout interface behavior a distribution of the shear stress along the fully grouted rock bolt by consideration of bolt shank failure is used. In this regard, different stages including complete bonding, partial decoupling, decoupling with the residual shear strength and complete decoupling are considered. With increasing the applied load, two possible cases involving the rock bolt complete pullout and bolt shank yielding are taken into account. Based on the presented analytical method, the obtained bolt head load-displacement curve can be compared with the one recorded in the pullout test. With this, the relevance of selected shear strength parameters compared to real parameters can be assessed. A flowchart for determining the bolt bond shear strength parameters is presented using the trial and error method (coded in Matlab). The proposed solution is used to determine two experimental pullout shear strength parameters. The results show good agreement between predicted and calculated load-displacement curves.
In considering a site for gas storage, it will be important to evaluate the effects of gas storage on the formation, so as to minimize the risk of a breach occurring in the system. Gas injection will result in an increase in formation fluid pressure, especially around the injection source, which in turn results in redistribution of the stress field. The induced deformations within the reservoir can potentially result in a damage zone within the caprock formation. This mechanical failure may involve shear along many of the existing fractures or creation of new fractures that reduce the sealing properties of the caprock system. The main objective of this paper is to develop a model to estimate the growth and extension of cracks in the caprock. In order to achieve this, the smeared crack approach is used to model the process of cracking in the caprock. Smeared cracking is a continuum approach for damage mechanics which is based on the idea that a crack is modeled by modifying the strength and stiffness of the material. The main model presented in this paper has three sub-models, which are the reservoir model, the caprock model and the smeared crack model. The reservoir model is a simplified coupled hydro-mechanical model that numerically simulates the radial fluid flow and analytically estimates the associated stress and strain within the reservoir. The results of the reservoir model are used as boundary conditions for the caprock model that estimates the stress and strain within the sealing caprock due to the deformation of the reservoir. Using the calculated stress and strain, the smeared crack model predicts the growth and extension of cracks within the caprock. The caprock is assumed to be initially crack free and impermeable. The developed model is then used to study the Yort-e-shah aquifer caprock in Iran to predict the growth and extension of cracks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.