The application of the new numerical approach for elastodynamics problems developed in our previous paper and based on the new solution strategy and the new time-integration methods is considered for 1D and 2D axisymmetric impact problems. It is not easy to solve these problems accurately because the exact solutions of the corresponding semi-discrete elastodynamics problems contain a large number of spurious high-frequency oscillations. We use the 1D impact problem for the calibration of a new analytical expression describing the minimum amount of numerical dissipation necessary for the new time-integration method used for filtering spurious oscillations. Then, we show that the new numerical approach for elastodynamics along with the new expression for numerical dissipation for the first time yield accurate and non-oscillatory solutions of the considered impact problems. The comparison of effectiveness of linear and quadratic elements as well as rectangular and
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.