We present an experimental study of the magnetic microstructure in the nanocrystalline hard magnet Tb. Field-dependent small-angle neutron scattering ͑SANS͒ data are analyzed quantitatively in terms of the correlation function of the spin misalignment. We find that up to applied fields of several tesla the magnetization remains ''locked in'' to the basal planes of the hcp crystal lattice of each individual crystallite, but that the in-plane orientation of the spins is highly nonuniform within each grain. This spin disorder at the nanoscale can be suppressed by a large applied field, but in the remanent state the disorder reduces the magnetization to values considerably below the Stoner limit. In field-dependent SANS, the intragrain spin disorder gives rise to a crossover of the scattering curves, and to the unusual finding that the scattering cross section at small scattering vector increases with increasing magnetic field. As the origin of the internal spin disorder within the grains, we propose an extra magnetic anisotropy energy at small grain size, presumably due to microstrain, a suggestion which is supported by analysis of ac-susceptibility data in the paramagnetic state. Our finding of a reduced remanence at small grain size is contrary to the remanence enhancement that is observed in other nanocrystalline hard magnets. We also report an unusual logarithmic field dependence of the magnetization over wide ranges of the applied field and temperature.
By means of antiferromagnetic resonance in the linear-chain antiferromagnet (CH3)4NMnCl3 (TMMC) we have studied the effect of sine-Gordon solitons on the q* = 0 magnon. Like in ferromagnetic chains the phase coupling between solitons and magnons results in a broadening of the magnon line width which is proportional to the soliton density and shows a drastic dependence on temperature and on the external magnetic field.
Mn(x)Zn(1-x)Fe(2)O(4)-based magnetic fluids with x = 0.1-0.9 are synthesized by coprecipitation. The samples are heated in a radio frequency (rf) magnetic field using an rf generator at different powers, and the temperature is measured as function of time using an optical thermometer. The heating effect of the dispersed magnetic nanoparticles is proportional to the imaginary part of the dynamic magnetic susceptibility of the ferrofluid, a quantity that depends on the temperature through the magnetization of the ferrite nanoparticles and the Néel or Brownian relaxation times, respectively. We propose an extrapolation method to actuate the Curie temperatures of the dispersed magnetic nanoparticles. By means of appropriate fitting functions for (dT/dt) versus T for both the heating and the cooling process, we deduce the Curie temperature of the samples under investigation. For Mn(x)Zn(1-x)Fe(2)O(4)-based magnetic nanoparticles the Curie temperatures decrease with increasing Zn content. They turn out to be lower than the literature values for bulk Mn(x)Zn(1-x)Fe(2)O(4), a phenomenon which is generally observed for phase transitions of nanocrystalline materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.