The shortcomings of conventional processes for treating urban wastewater subjected to secondary treatment, in order to use this water for irrigation, are well known. Alternative advanced treatment techniques are required instead. This study aims to use single-stage ultrafiltration (UF) or nanofiltration (NF) membrane processes to produce irrigation water from biologically treated urban wastewater. For this purpose, the effects of four process variables (membrane type, cross flow velocity, temperature, and transmembrane pressure) on process performance parameters (permeate flux, concentrations/removal efficiencies of contaminants) are analyzed through Taguchi experiment design. Temperature and membrane type are found to have the biggest effect on UF, whereas the membrane type is the most significant variable for the NF. Moreover, the use of membrane permeate for landscaping and agricultural irrigation based on optimal conditions is assessed with reference to the criteria imposed by national regulation/international guidelines. Water in various quality categories is produced using different settings for 28 distinct specific parameters with reference to the membrane type, process performance, and the irrigation method. The results indicate that single-stage UF or NF membranes with high recovery rates can be used for wastewater subjected to secondary treatment, to recover irrigation water at low pressure and high water permeate flux.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.