Because of many suitable properties, collagen sponges are used as an acellular implant or a biomaterial in the field of tissue engineering. Generally, the inner three-dimensional structure of the sponges influences the behavior of cells. To investigate this influence, it is necessary to develop a process to produce sponges with a defined, adjustable, and homogeneous pore structure. Collagen sponges can be produced by freeze-drying of collagen suspensions. The pore structure of the freeze-dried sponges mirrors the ice-crystal morphology after freezing. In industrial production, the collagen suspensions are solidified under time- and space-dependent freezing conditions, resulting in an inhomogeneous pore structure. In this investigation, unidirectional solidification was applied during the freezing process to produce collagen sponges with a homogeneous pore structure. Using this technique the entire sample can be solidified under thermally constant freezing conditions. The ice-crystal morphology and size can be adjusted by varying the solute concentration in the collagen suspension. Collagen sponges with a very uniform and defined pore structure can be produced. Furthermore, the pore size can be adjusted between 20-40 microm. The thickness of the sponges prepared during this research was 10 mm.
In tissue engineering cells are often combined with a carrying structure with collagen being a suitable material to form a 3D-scaffold. A process to manufacture collagen sponges with an adjustable and homogeneous structure has been developed at the Helmholtz-Institute. Using this process, collagen suspensions are frozen directionally and subsequently vacuum-dried. One clinical application in which these scaffolds can be used is soft tissue reconstruction. Various soft tissue defects require an adequate replacement, e.g. in the case of severe burn wounds, or after tumour resections. Collagen (type I) sponges, which are cultured with preadipocytes, may be used to regenerate such defects. In this case, pore sizes of approximately 100 microm are desired to allow a complete differentiation of preadipocytes into adipocytes. Based on known technology to manufacture collagen sponges with an adjustable and homogeneous pore structure, research on the increase of pore size beyond the previous limit of 40 microm was necessary in order to enable soft tissue replacement. A scaffold with an average pore size of 100 microm was obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.