This paper quantitatively investigates the role of flexibility of blade-like stems and, in particular, the occurrence of stem resonance on lateral dispersion in emergent aquatic canopies. Two sets of experiments are presented: single-stem and canopy tests. In the first set, the flow around single blade-like flexible model stems and the proximity to a resonant state are studied. Wake areas behind four model stems with distinct flexibilities are measured by particle image velocimetry for stem Reynolds numbers between 350 and 850. A single flexible emergent stem bends and oscillates in in-line and cross-flow directions due to periodic forcing associated with the vortex shedding. The plant motion, especially at resonance, affects the width of the wake area and, hence, the extent to which a tracer is dispersed laterally around a stem. The results show that the oscillation amplitude of a stem increases significantly as the vortex shedding frequency approaches the natural frequency of the stem in the corresponding direction. As a result, the size of the wake area is greater for the resonated stems. In the second set of the experiments, lateral dispersion in two different flexible model canopies was measured. The results show that the proximity to a resonant state is the major factor describing the variation of the lateral dispersion coefficient in the experiments for the tested Reynolds numbers and canopies. The dispersion coefficient increases as the vortex shedding frequency approaches the natural frequency of stems in either direction.
Flexible canopies bend and oscillate in both the in‐line and cross‐flow directions due to periodic forcing associated with vortex shedding. The resultant plant motion impacts the vegetation wake structure and, thus, the rate of lateral dispersion in these environments. Despite significant improvements in our understanding of dispersion in rigid canopies, a reliable framework to predict mixing in oscillating canopies is still lacking. This research demonstrates how plant oscillation can profoundly impact rates of lateral mixing in steady flows. The lateral dispersion coefficients were evaluated experimentally, using photographs of injected dye plumes within two types of emergent flexible model vegetation. Results revealed a significant increase in the rates of lateral dispersion (by up to 45%) due to the plant oscillation. A predictive model, based on a redefined vegetation density that incorporates the impact of plant oscillation, was developed that can accurately predict dispersion in emergent canopies. A quantitative prediction of dispersion in oscillating flexible vegetation is a significant step toward a more accurate description of material transport in aquatic environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.