Vacuum ultraviolet ͑VUV͒ spectroscopy is used to determine the valence-band structure and location of defect states within the bandgap of porous organosilicate ͑SiCOH͒ dielectrics both before and after VUV and UV irradiation. SiCOH dielectrics have bandgap energies of about 9 eV. In addition, positive charge is trapped by defect states located 1 eV above the top of the SiCOH valence-band edge. These defect states can be populated or depopulated with electrons during UV and VUV irradiation, respectively. This is verified by measuring the magnitude and polarity of the trapped charge after VUV irradiation using two techniques: ͑i͒ capacitance vs voltage characteristics obtained with a mercury probe and ͑ii͒ surface-potential measurements obtained with a Kelvin probe. Both techniques show that the defect states are uncharged when occupied with electrons and positively charged when depleted of electrons.
Plasmas, known to emit high levels of vacuum ultraviolet (VUV) radiation, are used in the semiconductor industry for processing of low-k organosilicate glass (SiCOH) dielectric device structures. VUV irradiation induces photoconduction, photoemission, and photoinjection. These effects generate trapped charges within the dielectric film, which can degrade electrical properties of the dielectric. The amount of charge accumulation in low-k dielectrics depends on factors that affect photoconduction, photoemission, and photoinjection. Changes in the photo and intrinsic conductivities of SiCOH are also ascribed to the changes in the numbers of charged traps generated during VUV irradiation. The dielectric-substrate interface controls charge trapping by affecting photoinjection of charged carriers into the dielectric from the substrate. The number of trapped charges increases with increasing porosity of SiCOH because of charge trapping sites in the nanopores. Modifications to these three parameters, i.e., (1) VUV induced charge generation, (2) dielectric-substrate interface, and (3) porosity of dielectrics, can be used to reduce trappedcharge accumulation during processing of low-j SiCOH dielectrics. Photons from the plasma are responsible for trapped-charge accumulation within the dielectric, while ions stick primarily to the surface of the dielectrics. In addition, as the dielectric constant was decreased by adding porosity, the defect concentrations increased. V
High frequency capacitance-voltage (C-V) measurements are used to determine the effects of vacuum ultraviolet (VUV) and ultraviolet (UV) irradiation on defect states in porous low-k organosilicate (SiCOH) dielectrics. The characteristics show that VUV photons depopulate trapped electrons from defect states within the dielectric creating trapped positive charge. This is evidenced by a negative shift in the flat-band voltage of the C-V characteristic. UV irradiation reverses this effect by repopulating the defect states with electrons photoinjected from the silicon substrate. Thus, UV reduces the number of trapped positive charges in the dielectric and can effectively repair processing-induced damage.
Vacuum-ultraviolet irradiation produces trapped charges in dielectrics. The trapped charges often generate self-consistent electric fields. A Monte Carlo simulation coupled with a Poisson equation solver is used to model the relationship between the irradiation photon flux and electrostatic potential. The simulation includes photoconduction, photoemission, photoinjection, and the effects of self-consistent electric fields. Calculations show that photoemission and photoinjection are responsible for changes in the electric potential as photon dose or dielectric thicknesses are varied. Experimental surface-potential measurements were made to compare the results of the simulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.