The damping properties associated with hysteretic behavior of the pseudoelastic stress-strain (σ -ε) curves of NiTi shape memory alloy (SMA) wires were studied. Damping was characterized for wires of 2.46 and 0.5 mm diameter using samples of 120 mm in length. The effect of the frequency and size of the wire on the σ -ε curves were studied in the 3 × 10 −5 -3 Hz range, with 8% maximal strain. Damping associated parameters, such as hysteresis width, dissipated energy and specific damping capacity (SDC), defined as the ratio between the hysteretic energy and the maximum strain work over a complete pseudoelastic cycle, show maximum values at a specific frequency for each size diameter. These findings were explained in terms of the temperature effects associated to the heat of transformation. Results show that NiTi wire of 0.5 mm diameter has the highest SDC when cycling around 0.1 Hz while wire of 2.46 mm diameter has the highest SDC at 0.01 Hz. At 1 Hz, the SDC for 0.5 mm diameter wire is around twice that of 2.46 mm diameter wire.
Two types of application in damping of structures by SMA in Civil Engineering are considered. The first one is related to the reduction of the damage produced by earthquakes. The second one is concerned with the increase of the lifetime of the stayed cables in bridges. The analyses of the experimental conditions required for each application are different: Several years or decades without any activity (excepted the summer-winter room temperature parasitic effects) followed by one or two minutes of oscillations under the earthquake affects, or near 100000 oscillations per day with pauses of several hours or days in the damping of stayed cables in bridges. This article analyzes the fatigue behavior of the CuAlBe alloy (appropriate for earthquakes) and of the NiTi alloy. Measurements of the damping of stayed cables indicate that the oscillation amplitude could be reduced up to one-third by using a NiTi wire as a damper device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.