Pulmonary surfactant is secreted by alveolar type II cells as lipid-rich, densely packed lamellar body-like particles (LBPs). The particulate nature of released LBPs might be the result of structural and/or thermodynamic forces. Thus mechanisms must exist that promote their transformation into functional units. To further define these mechanisms, we developed methods to follow LBPs from their release by cultured cells to insertion in an air-liquid interface. When released, LBPs underwent structural transformation, but did not disperse, and typically preserved a spherical appearance for days. Nevertheless, they were able to modify surface tension and exhibited high surface activity when measured with a capillary surfactometer. When LBPs inserted in an air-liquid interface were analyzed by fluorescence imaging microscopy, they showed remarkable structural transformations. These events were instantaneous but came to a halt when the interface was already occupied by previously transformed material or when surface tension was already low. These results suggest that the driving force for LBP transformation is determined by cohesive and tensile forces acting on these particles. They further suggest that transformation of LBPs is a self-regulated interfacial process that most likely does not require structural intermediates or enzymatic activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.