Optimization problems with constraints which require the solution of a partial differential equation arise widely in many areas of the sciences and engineering, in particular in problems of design. The solution of such PDE-constrained optimization problems is usually a major computational task. Here we consider simple problems of this type: distributed control problems in which the 2-and 3-dimensional Poisson problem is the PDE. The large dimensional linear systems which result from discretization and which need to be solved are of saddle-point type. We introduce two optimal preconditioners for these systems which lead to convergence of symmetric Krylov subspace iterative methods in a number of iterations which does not increase with the dimension of the discrete problem. These preconditioners are block structured and involve standard multigrid cycles. The optimality of the preconditioned iterative solver is proved theoretically and verified computationally in several test cases. The theoretical proof indicates that these approaches may have much broader applicability for other partial differential equations.
The problem of finding good preconditioners for the numerical solution of an important class of indefinite linear systems is considered. These systems are of a regularized saddle point structure [ A B T B −C ][ x y ] = [ c d ], where A ∈ R n×n , C ∈ R m×m are symmetric and B ∈ R m×n. In [SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1300-1317], Keller, Gould, and Wathen analyze the idea of using constraint preconditioners that have a specific 2 by 2 block structure for the case of C being zero. We shall extend this idea by allowing the (2, 2) block to be symmetric and positive semidefinite. Results concerning the spectrum and form of the eigenvectors are presented, as are numerical results to validate our conclusions.
Abstract. We consider the application of the conjugate gradient method to the solution of large, symmetric indefinite linear systems. Special emphasis is put on the use of constraint preconditioners and a new factorization that can reduce the number of flops required by the preconditioning step. Results concerning the eigenvalues of the preconditioned matrix and its minimum polynomial are given. Numerical experiments validate these conclusions.
The problem of finding good preconditioners for the numerical solution of a certain important class of indefinite linear systems is considered. These systems are of a 2 by 2 block (KKT) structure in which the (2,2) block (denoted by −C) is assumed to be nonzero.In Constraint preconditioning for indefinite linear systems, SIAM J. Matrix Anal. Appl., 21 (2000), Keller, Gould and Wathen introduced the idea of using constraint preconditioners that have a specific 2 by 2 block structure for the case of C being zero. We shall give results concerning the spectrum and form of the eigenvectors when a preconditioner of the form considered by Keller, Gould and Wathen is used but the system we wish to solve may have C = 0. In particular, the results presented here indicate clustering of eigenvalues and, hence, faster convergence of Krylov subspace iterative methods when the entries of C are small; such a situations arise naturally in interior point methods for optimization and we present results for such problems which validate our conclusions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.