The objective of this study is to evaluate the potential of various grids to satisfactorily simulate the development of a cooling film, using a coupled computation that takes into account the full geometry. Detailed computations of a single row of 30 degrees round holes on a flat plate are presented for blowing ratios of 0.764, 1.01 and 1.54. The simulation results are compared well with experimental data. The two-layer model gave more accurate results but consumed much more computational time than the standard wall functions. The k-ε turbulence model with wall functions with appropriate values of + y is suitable for practical use. The results show the importance of the conjugate calculation for accurately describing the influence of the heat transfer within the cooling film.K eywords: film cooling, conjugate heat transfer, blowing ratio. CLC number: TK124 Document code: A
A hydrogen combustion turbine system has been proposed by Mitsubishi Heavy Industries, LTD. which is the Closed Circuit Cooled Topping Recuperation Cycle (CCCTR cycle) and is part of a Japanese government sponsored program WE-NET (“World Energy Network”). This cycle is composed of closed Brayton and Rankine cycles. The efficiency of this cycle is more than 60% HHV (Higher Heat Value) with a power capacity of 500MW. This cycle was selected as the most suitable for hydrogen combustion turbine used for industrial power plant by the Japanese government.
A closed circuit steam cooling system has been proposed to cool vanes and blades of the high temperature turbine (HIT) which has inlet temperature of 1700°C and inlet pressure of 45bar.
This paper presents the comparisons of the thermal efficiency and the feasibility of components between the CCCTR cycle and other cycles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.