The Hyper Suprime-Cam (HSC) is an 870 megapixel prime focus optical imaging camera for the 8.2 m Subaru telescope. The wide-field corrector delivers sharp images of 0${^{\prime\prime}_{.}}$2 (FWHM) in the HSC-i band over the entire 1${^{\circ}_{.}}$5 diameter field of view. The collimation of the camera with respect to the optical axis of the primary mirror is done with hexapod actuators, the mechanical accuracy of which is a few microns. Analysis of the remaining wavefront error in off-focus stellar images reveals that the collimation of the optical components meets design specifications. While there is a flexure of mechanical components, it also is within the design specification. As a result, the camera achieves its seeing-limited imaging on Maunakea during most of the time; the median seeing over several years of observing is 0${^{\prime\prime}_{.}}$67 (FWHM) in the i band. The sensors use p-channel, fully depleted CCDs of 200 μm thickness (2048 × 4176 15 μm square pixels) and we employ 116 of them to pave the 50 cm diameter focal plane. The minimum interval between exposures is 34 s, including the time to read out arrays, to transfer data to the control computer, and to save them to the hard drive. HSC on Subaru uniquely features a combination of a large aperture, a wide field of view, sharp images and a high sensitivity especially at longer wavelengths, which makes the HSC one of the most powerful observing facilities in the world.
The Large Helical Device (LHD) now under construction is a heliotron/torsatron device with a closed divertor system. The edge LHD magnetic structure has been studied in detail. A peculiar feature of the configuration is the existence of edge surface layers, a complicated three dimensional magnetic structure which does not, however, seem to hamper the expected divertor functions. Two divertor operational modes are being considered for the LHD experimenthigh density, cold radiative divertor operation as a safe heat removal scheme and high temperature divertor plasma operation. In the latter operation, a divertor plasma with a temperature of a few keV, generated by efficient pumping, is expected to lead to a significant improvement in core plasma confinement. Conceptual designs of the LHD divertor components are under way.
Divertor plasma characteristics in the Large Helical Device (LHD) have
been investigated mainly by using Langmuir probes. The three-dimensional
structure of the helical divertor, which is naturally produced in the
heliotron-type magnetic configuration, is clearly seen in the measured
particle and power deposition profiles on the divertor plates. These
observations are consistent with the numerical results of field line
tracing. The particle flux to the divertor plates increases almost linearly
with the line averaged density. The high-recycling regime and divertor
detachment, which are observed in tokamaks, have not been observed even
during high density discharges with low input power. Both electron density
and temperature decrease with increasing radius in the stochastic layer with
open field lines, and at the divertor plate they become fairly low compared
with those at the last closed flux surface. This means the reduction of
pressure along the magnetic field lines occurs in the open field line region
in LHD.
We have fabricated photonic quasicrystal lasers with a Penrose lattice that does not possess translational symmetry but has long-range order, and observed coherent lasing action due to the optical feedback from quasiperiodicity, exhibiting a variety of 10-fold-symmetric lasing spot patterns. The lattice constant dependence of lasing frequencies and spot patterns show complicated features very different from photonic crystal/random lasers, and we have quantitatively explained them by considering their reciprocal lattice. Unique diversity of their reciprocal lattice opens up new possibilities for the form of lasers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.