The effect of Ag content on the wetting behavior of Sn-9Zn-xAg on aluminum and copper substrates during soldering, as well as the mechanical properties and electrochemical corrosion behavior of Al/Sn-9Zn-xAg/Cu solder joints, were investigated in the present work. Tiny Zn and coarsened dendritic AgZn 3 regions were distributed in the Sn matrix in the bulk Sn-9Zn-xAg solders, and the amount of Zn decreased while that of AgZn 3 increased with increasing Ag content. The wettability of Sn-9Zn-1.5Ag solder on Cu substrate was better than those of the other Sn-9Zn-xAg solders but worse than that of Sn-9Zn solder. The wettability of Sn-9Zn-1.5Ag on the Al substrate was also better than those of the other Sn-9Zn-xAg solders, and even better than that of Sn-9Zn solder. The Al/Sn-9Zn/Cu joint had the highest shear strength, and the shear strength of the Al/Sn-9Zn-xAg/Cu (x = 0 wt.% to 3 wt.%) joints gradually decreased with increasing Ag content. The corrosion resistance of the Sn-9Zn-xAg solders in Al/Sn-9Zn-xAg/Cu joints in 5% NaCl solution was improved compared with that of Sn-9Zn. The corrosion potential of Sn-9Zn-xAg solders continuously increased with increasing Ag content from 0 wt.% to 2 wt.% but then decreased for Sn-9Zn-3Ag. The addition of Ag resulted in the formation of the AgZn 3 phase and in a reduction of the amount of the eutectic Zn phase in the solder matrix; therefore, the corrosion resistance of the Al/Sn-9Zn-xAg/Cu joints was improved.
The oxidation kinetics and mechanism of oxide-scale failure of pure Ni oxidized under external static compressive and tensile loads were studied. The results showed that both types of mechanical loads accelerated the oxidation rate, but the effect was different for the two types. Compressive loading (CL) affected it by improving the plasticity of oxide scales, and tensile loading (TL) affected it by amplifying the compaction of the oxide-metal interface. As for the oxide-scale failure, CL can delayed cracking, TL accelerated brittle failure. The study analyzed the effect of external load on the oxidation kinetics and the failure mechanism of oxide scales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.