Background Many medically-refractory trigeminal neuralgia patients are non-responders to surgical treatment. Few studies have explored how trigeminal nerve characteristics relate to surgical outcome, and none have investigated the relationship between subcortical brain structure and treatment outcomes. Methods We retrospectively studied trigeminal neuralgia patients undergoing surgical treatment with microvascular decompression. Preoperative magnetic resonance imaging was used for manual tracing of trigeminal nerves and automated segmentation of hippocampus, amygdala, and thalamus. Nerve and subcortical structure volumes were compared between responders and non-responders and assessed for ability to predict postoperative pain outcome. Results In all, 359 trigeminal neuralgia patients treated surgically from 2005–2018 were identified. A total of 34 patients met the inclusion criteria (32 with classic and two with idiopathic trigeminal neuralgia). Across all patients, thalamus volume was reduced ipsilateral compared to contralateral to the side of pain. Between responders and non-responders, non-responders exhibited larger contralateral trigeminal nerve volume, and larger ipsilateral and contralateral hippocampus volume. Through receiver-operator characteristic curve analyses, contralateral hippocampus volume correctly classified treatment outcome in 82% of cases (91% sensitive, 78% specific, p = 0.008), and contralateral nerve volume correctly classified 81% of cases (91% sensitive, 75% specific, p < 0.001). Binomial logistic regression analysis showed that contralateral hippocampus and contralateral nerve volumes together classified outcome with 84% accuracy (Nagelkerke R2 = 65.1). Conclusion Preoperative hippocampal and trigeminal nerve volume, measured on standard clinical magnetic resonance images, may predict early non-response to surgical treatment for trigeminal neuralgia. Treatment resistance in medically refractory trigeminal neuralgia may depend on the structural features of both the trigeminal nerve and structures involved in limbic components of chronic pain.
Background Medically-refractory trigeminal neuralgia (TN) can be treated successfully with operative intervention, but a significant proportion of patients are non-responders despite undergoing technically successful surgery. The thalamus is a key component of the trigeminal sensory pathway involved in transmitting facial pain, but the role of the thalamus in TN, and its influence on durability of pain relief after TN surgery, are relatively understudied. We aimed to test the hypothesis that variations in thalamic structure and metabolism are related to surgical non-response in TN. Methods We performed a longitudinal, peri-operative neuroimaging study of the thalamus in medically-refractory TN patients undergoing microvascular decompression or percutaneous balloon compression rhizotomy. Patients underwent structural MRI and MR spectroscopy scans pre-operatively and at 1-week following surgery, and were classified as responders or non-responders based on 1-year post-operative pain outcome. Thalamus volume, shape, and metabolite concentration (choline/creatine [Cho/Cr] and N-acetylaspartate/creatine [NAA/Cr]) were evaluated at baseline and 1-week, and compared between responders, non-responders, and healthy controls. Results Twenty healthy controls and 23 patients with medically-refractory TN treated surgically (17 responders, 6 non-responders) were included. Pre-operatively, TN patients as a group showed significantly larger thalamus volume contralateral to the side of facial pain. However, vertex-wise shape analysis showed significant contralateral thalamus volume reduction in non-responders compared to responders in an axially-oriented band spanning the outer thalamic circumference (peak p = 0.019). Further, while pre-operative thalamic metabolite concentrations did not differ between responders and non-responders, as early as 1-week after surgery, long-term non-responders showed a distinct decrease in contralateral thalamic Cho/Cr and NAA/Cr, irrespective of surgery type, which was not observed in responders. Conclusions Atrophy of the contralateral thalamus is a consistent feature across patients with medically-refractory TN. Regional alterations in preoperative thalamic structure, and very early post-operative metabolic changes in the thalamus, both appear to influence the durability of pain relief after TN surgery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.