This article studies the diffusion problems with a concentrated source which is provided at a sequential time steps in 1 dimensional space. The problems are considered for both Gaussian and fractional diffusion operators. For the fractional diffusion case, Riemann-Liouville operator with fractional order is used to describe the model with diffusion rate slower than normal time scale, which is known as sub diffusive problems. Due to this sub diffusive property, the existence and nonexistence behavior of the solution will be studied. Since the forcing term will experience a concentrated source at a sequence of time steps, the frequency, the time difference and strength of the source may affect the growth rate of the solution. Criteria for these effects which may cause for the quenching behavior of the solution will be given. The existence of the solution is investigated. The monotone behavior in spatial will be given. The quenching behavior of the solution will be studied. The location of the quenching point will be discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.