The lifetimes of the first electronically excited state of (H(2)O)(n)...Na and (D(2)O)(n)...Na clusters up to n = 40 have been measured by two-color pump-probe spectroscopy (800 and 400 nm) with 35 fs laser pulses. The excited-state lifetime decreases rapidly from 1.2 ps at n = 2 to approximately 100 fs at n > or = 10. For (D(2)O)(n)...Na, the average lifetime is about 3.6 times longer. The fast energy redistribution is explained by conversion of the electronic excitation into vibrations of the ground state. A simple model based on Fermi's Golden Rule predicts the observed trends but fails to reproduce the observed lifetimes quantitatively. The longer lifetimes for deuterated clusters are discussed in the framework of the famous energy gap law and indicate that the stretching modes of water play an important role in the energy-transfer process.
Using the efficient nonlinear conversion scheme which was recently developed in our group [M. Beutler, M. Ghotbi, F. Noack, and I. V. Hertel, Opt. Lett. 134, 1491 (2010); M. Ghotbi, M. Beutler, and F. Noack, ibid 35, 3492 (2010)] to provide intense sub-50 fs vacuum ultraviolet laser pulses we have performed the first real time study of ultrafast, photo-induced dynamics in the electronically excited Ã-state of water clusters (H(2)O)(n) and (D(2)O)(n) , n=2-10. Three relevant time scales, 1.8-2.5, 10-30, and 50-150 fs, can be distinguished which-guided by the available theoretical results-are attributed to H (D)-ejection, OH (OD) dissociation, and a nonadiabatic transition through a conical intersection, respectively. While a direct quantitative comparison is only very preliminary, the present results provide a crucial test for future modeling of excited state dynamics in water clusters, and should help to unravel some of the many still unresolved puzzles about water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.