When dielectric materials are brought into contact and then separated, they develop static electricity. For centuries, it has been assumed that such contact charging derives from the spatially homogeneous material properties (along the material's surface) and that within a given pair of materials, one charges uniformly positively and the other negatively. We demonstrate that this picture of contact charging is incorrect. Whereas each contact-electrified piece develops a net charge of either positive or negative polarity, each surface supports a random "mosaic" of oppositely charged regions of nanoscopic dimensions. These mosaics of surface charge have the same topological characteristics for different types of electrified dielectrics and accommodate significantly more charge per unit area than previously thought.
Even minute quantities of electric charge accumulating on polymer surfaces can cause shocks, explosions, and multibillion-dollar losses to electronic circuitry. This paper demonstrates that to remove static electricity, it is not at all necessary to "target" the charges themselves. Instead, the way to discharge a polymer is to remove radicals from its surface. These radicals colocalize with and stabilize the charges; when they are scavenged, the surfaces discharge rapidly. This radical-charge interplay allows for controlling static electricity by doping common polymers with small amounts of radical-scavenging molecules, including the familiar vitamin E. The effectiveness of this approach is demonstrated by rendering common polymers dust-mitigating and also by using them as coatings that prevent the failure of electronic circuitry.
In touch: the outcome of contact electrification between dielectrics depends not only on the transfer of charge but also on the transfer of material. Although only minute quantities of materials are being exchanged during contact, they can reverse the polarity of dielectrics. The reported results corroborate the mosaic model and suggest that the observations are because of the mechanical softness/hardness of the materials.
Although it is known that contact-electrified polymers can drive chemical reactions, the origin of this phenomenon remains poorly understood. To date, it has been accepted that this effect is due to excess electrons developed on negatively charged surfaces and to the subsequent transfer of these electrons to the reactants in solution. The present study demonstrates that this view is incorrect and, in reality, the reactions are driven by mechanoradicals created during polymer-polymer contact.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.