Many of the current strategies for removing pollutants from water are based on nanomaterials and nanotechnology. Lower values of Biological Oxygen Demand (BOD5) and Chemical Oxygen Demand (COD) in water results in reduction in the amount of oxidizable pollutants. We present a study on the reduction of COD and BOD5 in water from Wadi El Bey River (Tunisia), using magnetite nanoparticles (MNPs) and magnetic fields. The COD and BOD5 removal reached values higher than 50% after 60 min, with optimum efficiency at pH values of ≈8 and for MNPs concentrations of 1 g/L. The use of a permanent magnetic field (0.33 T) showed an increase of COD and BOD5 removal from 61% to 76% and from 63% to 78%, respectively. This enhancement is discussed in terms of the MNPs coagulation induced by the magnetic field and the adsorption of ionic species onto the MNPs surface due to Fe3O4 affinity.
Intermittent planted filters are extensive biological purification techniques aimed at oxidizing and decontaminating urban wastewater at a low cost and with minimum environmental impacts. The main purpose of this study was to evaluate the performances of intermittent planted filters in treating urban wastewater under arid conditions of southern Tunisia. The experimental study was carried out on a pilot scale plant comprising five constructed gravel-sand basins. Screened urban wastewater effluent was intermittently applied with a daily hydraulic load of 400 L/m2. Several water quality parameters were monitored at the inlet and outlet of this treatment plant. The average removal rate were 94.8%, 92.3%, 99.3%, 89.9% and 93.3% for chemical and biological oxygen demand, total suspended solids, ammonium nitrogen and orthophosphate, respectively. Additionally, results demonstrated that this treatment system is capable to remove 3.67, 3.22 and 2.44 log units of total and faecal coliforms, and faecal streptococci, respectively. Results showed that Phragmites australis allowed the development of biofilm in the sand filter beds, improving their purification efficiency. Furthermore, no bio-sludge production, no mechanical aeration, low energy requirement (0.02 kW/m2) and green aesthetic ambience are the additional particular strengths of the proposed pilot-plant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.