Disulfide bond reduction by the CO2.- radical was investigated in aponeocarzinostatin, aporiboflavin-binding protein, and bovine immunoglobulin. Protein-bound cysteine free thiols were formed under gamma-ray irradiation in the course of a pH-dependent and protein concentration dependent chain reaction. The chain efficiency increased upon acidification of the medium, with an apparent pKa around 5, and decreased abruptly below pH 3.6. It decreased also at neutral pH as cysteine accumulated. From pulse radiolysis analysis, CO2.- proved able to induce rapid one-electron oxidation of thiols and of tyrosine phenolic groups in addition to one-electron donation to exposed disulfide bonds. The bulk rate constant of CO2.- uptake by the native proteins was 5- to 10-fold faster at pH 3 than at pH 8, and the protonated form of the disulfide radical anion, [symbol: see text], appeared to be the major protein radical species formed under acidic conditions. The main decay path of [symbol: see text] consisted of the rapid formation of a thiyl radical intermediate [symbol: see text] in equilibrium with the closed, cyclic form. The thiyl radical was subsequently reduced to the sulfhydryl level [symbol: see text] on reaction with formate, generating 1 mol of the CO2.- radical, thus propagating the chain reaction. The disulfide radical anion [symbol: see text] at pH 8 decayed through competing intramolecular and/or intermolecular routes including disproportionation, protein-protein cross-linking, electron transfer with tyrosine residues, and reaction with sulfhydryl groups in prereduced systems. Disproportionation and cross-linking were observed with the riboflavin-binding protein solely. Formation of the disulfide radical cation [symbol: see text], phenoxyl radical Tyr-O. disproportionation, and phenoxyl radical induced oxidation of preformed thiol groups should also be taken into consideration to explain the fate of the oxygen-centered phenoxyl radical.
The dynamics of CO rebinding with cytochromes P-450cam, P-450scc, and P-450LM2 after laser flash photolysis have been investigated from 293 to 77 K, and the distribution functions of the rate parameters P(k) and of the activation enthalpy P(H) were determined using the maximum entropy method. In a fluid solvent, geminate rebinding is nonexponential, presumably because of a spectral shift induced by protein relaxation on the same time scale. Substrate binding increases the yield of the bimolecular process and decreases the bimolecular rate by 1 or 2 orders of magnitude. The amplitude of these effects seems to correlate with substrate specificity. In a rigid environment at low temperature, cytochromes P-450 exhibit a bimodal distribution of activation enthalpy; P(H) consists of two distinct bands which are in a thermal equilibrium even at 77 K. The results lead to a scheme in which a common structural perturbation splits the conformational substates of cytochromes P-450 into pairs of "doublet" substates with different dynamic properties. The hierarchy of conformational substates of cytochromes P-450 thus contrasts with that of oxygen-binding hemoproteins such as myoglobin.
Oxyhemoglobin photolysis has been investigated with picosecond laser techniques. Transient light absorption changes observed within 500–600 nm reveal two processes following photodissociation: electronic relaxation up to 400 ps after dissociation and a partial religation during 3 ns. The kinetics of oxygen geminate recombination at pH 7 and 22°C has a monoexponential decay with a lifetime of 1.5 ns ± 0.1 ns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.