In 2020, Cameron et al. introduced the restricted numerical range of a digraph (directed graph) as a tool for characterizing digraphs and studying their algebraic connectivity. In particular, digraphs with a restricted numerical range of a single point, a horizontal line segment, and a vertical line segment were characterized as k-imploding stars, directed joins of bidirectional digraphs, and regular tournaments, respectively. In this article, we extend these results by investigating digraphs whose restricted numerical range is a convex polygon in the complex plane. We provide computational methods for identifying these polygonal digraphs and show that these digraphs can be broken into three disjoint classes: normal, restricted-normal, and pseudo-normal digraphs, all of which are closed under the digraph complement. We prove sufficient conditions for normal digraphs and show that the directed join of two normal digraphs results in a restricted-normal digraph. Also, we prove that directed joins are the only restricted-normal digraphs when the order is square-free or twice a square-free number. Finally, we provide methods to construct restricted-normal digraphs that are not directed joins for all orders that are neither square-free nor twice a square-free number.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.