Laser-induced breakdown spectrometry (LIBS) has been applied for multi-elemental analysis of slag samples from a steel plant. In order to avoid the time-consuming step of sample preparation, the liquid slag material can be filled in special probes. After cooling of the liquid slag and solidification, the samples can be analyzed with LIBS. Chemical analysis of slag is an essential input parameter used for numerical simulations to control liquid steel processing. The relative variation range of element concentrations in slag samples from steel production can amount to up to 30%. A multivariate calibration model is used to take into account matrix effects caused by these varying concentrations. By optimizing the measuring parameters as well as the calibration models, an agreement between the standard X-ray fluorescence (XRF) analysis and LIBS analysis in terms of the coefficient of determination r2 of 0.99 for the main analytes CaO, SiO2, and Fetot of converter slag samples was achieved. The average repeatability of the LIBS measurement for these elements in terms of the relative standard deviation of the determined concentration is improved to less than 1.0%. With these results, the basis is established for future on-line applications of LIBS in the steel-making industry for slag analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.