The Interface Region Imaging Spectrograph (IRIS) small explorer spacecraft provides simultaneous spectra and images of the photosphere, chromosphere, transition region, and corona with 0.33 -0.4 arcsec spatial resolution, two-second temporal resolution, and 1 km s −1 velocity resolution over a field-of-view of up to 175 arcsec × 175 arcsec. . IRIS is sensitive to emission from plasma at temperatures between 5000 K and 10 MK and will advance our understanding of the flow of mass and energy through an interface region, formed by the chromosphere and transition region, between the photosphere and corona. This highly structured and dynamic region not only acts as the conduit of all mass and energy feeding into the corona and solar wind, it also requires an order of magnitude more energy to heat than the corona and solar wind combined. The IRIS investigation includes a strong numerical modeling component based on advanced radiative-MHD codes to facilitate interpretation of observations of this complex region. Approximately eight Gbytes of data (after compression) are acquired by B. De Pontieu (B) ·Harvard-Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138, USA
A multi-level accelerated lambda iteration (MALI) method for radiative transfer calculations with partial frequency redistribution (PRD) is presented. The method, which is based on Rybicki & Hummer' s, complete frequency redistribution (CRD) formalism with full preconditioning, consistently accounts for overlapping radiative transitions. Its extension to PRD is implemented in a very natural way through the use of the Ψ operator operating on the emissivity rather than the commonly used Λ operator which operates on the source function. Apart from requiring an additional inner computational loop to evaluate the PRD emission line profiles with fixed population numbers, implementation of the presented method requires only a trivial addition of computer code. Since the presented method employs a diagonal operator, it is easily extended to different geometries. Currently, it has been implemented for one-, two-, and three-dimensional Cartesian grids, and spherical symmetry. In all cases the speed of convergence with PRD is very similar to that in CRD, with the former sometimes even surpassing the latter. Sample calculations exhibiting the favorable convergence behavior of the PRD code are presented in the case of the Ca II H and K lines, the Mg II h and k lines and the hydrogen Lyman α and β lines in a one-dimensional solar model, and the Ca II resonance lines in a two-dimensional flux-sheet model.
NASA's Interface Region Imaging Spectrograph (IRIS) small explorer mission will study how the solar atmosphere is energized. IRIS contains an imaging spectrograph that covers the Mg ii h&k lines as well as a slit-jaw imager centered at Mg ii k. Understanding the observations requires forward modeling of Mg ii h&k line formation from three-dimensional (3D) radiation-magnetohydrodynamic (RMHD) models. This paper is the second in a series where we undertake this modeling. We compute the vertically emergent h&k intensity from a snapshot of a dynamic 3D RMHD model of the solar atmosphere, and investigate which diagnostic information about the atmosphere is contained in the synthetic line profiles. We find that the Doppler shift of the central line depression correlates strongly with the vertical velocity at optical depth unity, which is typically located less than 200 km below the transition region (TR). By combining the Doppler shifts of the h and k lines we can retrieve the sign of the velocity gradient just below the TR. The intensity in the central line depression is anti-correlated with the formation height, especially in subfields of a few square Mm. This intensity could thus be used to measure the spatial variation of the height of the TR. The intensity in the line-core emission peaks correlates with the temperature at its formation height, especially for strong emission peaks. The peaks can thus be exploited as a temperature diagnostic. The wavelength difference between the blue and red peaks provides a diagnostic of the velocity gradients in the upper chromosphere. The intensity ratio of the blue and red peaks correlates strongly with the average velocity in the upper chromosphere. We conclude that the Mg ii h&k lines are excellent probes of the very upper chromosphere just below the TR, a height regime that is impossible to probe with other spectral lines. They also provide decent temperature and velocity diagnostics of the middle chromosphere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.