Owing to the high incidences of toxigenic moulds and mycotoxins in the study area, there is a need for the creation of mycotoxin awareness among maize farmers of India to control the chronic adverse health effects on humans and livestock due to mycotoxins.
Aim: To develop and evaluate a multiplex polymerase chain reaction assay (mPCR) for the concurrent detection of four major mycotoxin metabolic pathway genes, viz. nor1 (aflatoxin), Tri6 (trichothecene), FUM13 (fumonisin) and otanps (ochratoxin A). Methods and Results: A mPCR assay with competitive internal amplification control, employing specific primers for each of the aforementioned four genes, was optimized and validated using 10 reference strains and 60 pure culture isolates. The standardized mPCR assay detected all four mycotoxin metabolic genes in artificially contaminated maize samples with a sensitivity of 2 9 10 3 CFU g À1 for nor1-positive Aspergillus strains, Tri6 and FUM13-positive Fusarium strains and 2 9 10 4 CFU g À1 for otanps-positive Penicillium strains. When the developed mPCR assay was applied to 40 natural foods, 35% (14 of 40) of the samples were contaminated with either one or more mycotoxins. The mPCR results were further evaluated with high-performance liquid chromatography (HPLC), and in general, both the methods provided unequivocal results.
Conclusion:The current mPCR assay is a rapid and reliable tool for simultaneous specific and sensitive detection of aflatoxigenic Aspergillus strains, trichothecene-and fumonisin-producing Fusarium strains, and ochratoxigenic Penicillium species from naturally contaminated foods. Significance and Impact of the Study: This mPCR assay could be a supplementary strategy to current conventional mycotoxin analytical techniques such as thin-layer chromatography (TLC), high performance thin layer chromatography, HPLC, etc., and a reliable tool for high-throughput monitoring of major mycotoxin-producing fungi during the processing steps of food and feed commodities.
In the present study, generation and characterization of a highly specific monoclonal antibody (mAb) against Ochratoxin A (OTA) was undertaken. The generated mAb was further used to develop a simple, fast, and sensitive sandwich dot-ELISA (s-dot ELISA) method for detection of OTA from contaminated food grain samples. The limit of detection (LOD) of the developed enzyme-linked immunosorbent assay (ELISA) method was determined as 5.0 ng/mL of OTA. Developed method was more specific toward OTA and no cross reactivity was observed with the other tested mycotoxins such as deoxynivalenol, fumonisin B1, or aflatoxin B1. To assess the utility and reliability of the developed method, several field samples of maize, wheat and rice (n = 195) collected from different geographical regions of southern Karnataka region of India were evaluated for the OTA occurrence. Seventy two out of 195 samples (19 maize, 38 wheat, and 15 rice) were found to be contaminated by OTA by s-dot ELISA. The assay results were further co-evaluated with conventional analytical high-performance liquid chromatography (HPLC) method. Results of the s-dot ELISA are in concordance with HPLC except for three samples that were negative for OTA presence by s-dot ELISA but found positive by HPLC. Although positive by HPLC, the amount of OTA in the three samples was found to be lesser than the accepted levels (>5 μg/kg) of OTA presence in cereals. Therefore, in conclusion, the developed s-dot ELISA is a better alternative for routine cereal based food and feed analysis in diagnostic labs to check the presence of OTA over existing conventional culture based, tedious analytical methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.