Thyroid tumors are a frequent finding not only in iodine-deficient regions. They are predominantly characterized by somatic genetic changes (e.g. point mutations or rearrangements). Because slow thyroid proliferation is a apparent contradiction to a high frequency of tumor initiation, we characterized mutational events in thyroid. First we studied the frequency of certain base exchanges in somatic TSH receptor (TSHR) mutations and determined the spontaneous mutation rate in thyroid and liver. Then we applied different protocols of the comet assay to quantify genomic DNA damage and conducted immunohistochemistry for 8-oxoguanine as a molecular marker for oxidative stress. Among 184 somatic mutations of the human TSHR found in thyroid tumors, C-->T transitions had a unexpectedly high frequency (>32%). The mutation rate in thyroid is 8-10 times higher than in other organs. The comet assay detected increased levels of oxidized pyrimidine (2- to 3-fold) and purine (2- to 4-fold) in thyroid, compared with liver and lung, and a 1.6-fold increase of oxidized purine, compared with spleen. Immunohistochemistry revealed high levels of 8-oxoguanine in thyroid epithelial cells. We have shown a strikingly high mutation rate in the thyroid. Furthermore, results of the comet assay as well as immunohistochemistry suggest that oxidative DNA modifications are a likely cause of the higher mutation rate. It is possible that free radicals resulting from reactive oxygen species in the thyroid generate mutations more frequently. This is also supported by the spectrum of somatic mutations in the TSHR because more frequent base changes could stem from oxidized base adducts that we detected in the comet assay and with immunohistochemistry.
Because thyroid nodules are frequent in areas with iodine deficiency the aim of this study was to characterise molecular events during iodine deficiency that could explain mutagenesis and nodule formation. We therefore studied gene expression of catalytic enzymes prominent for H(2)O(2) detoxification and antioxidative defence, quantified DNA oxidation and damage as well as spontaneous mutation rates (SMR) in mice and rats fed an iodine controlled diet. Antioxidative enzymes such as superoxide dismutase 3, glutathione peroxidase 4 and the peroxiredoxins 3 and 5 showed increased mRNA expression, which indicates increased radical burden that could be the cause of additional oxidized base adducts found in thyroidal genomic DNA in our experiments of iodine deficiency. Furthermore, the uracil content of thyroid DNA was significantly higher in the iodine-deficient compared to the control group. While SMR is very high in the normal thyroid gland it is not changed in experimental iodine deficiency. Our data suggest that iodine restriction causes oxidative stress and DNA modifications. A higher uracil content of the thyroid DNA could be a precondition for C-->T transitions often detected as somatic mutations in nodular thyroid tissue. However, the absence of increased SMR would argue for more efficient DNA repair in response to iodine restriction.
The effects of the food mutagen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) were studied in DNA repair deficient XPA(-/-) mice. The nullizygous XPA-knockout mice, which lack a functional nucleotide excision repair (NER) pathway, were exposed to dietary concentrations ranging from 10 to 200 p.p.m. The results show that PhIP is extremely toxic to XPA(-/-) mice, even at doses 10-fold lower than tolerated by wild-type C57BL/6 mice. XPA(-/-) mice rapidly lost weight and died within 2 and 6 weeks upon administration of 200 and 100 p.p.m., respectively. Intestinal abnormalities like distended and overfilled ileum and caecum, together with clear signs of starvation, suggests that the small intestines were the primary target tissue for the severe toxic effects. Mutation analysis in XPA(-/-) mice carrying a lacZ reporter gene, indicated that the observed toxicity of PhIP might be caused by genotoxic effects in the small intestine. LacZ mutant frequencies appeared to be selectively and dose-dependently increased in the intestinal DNA of treated XPA(-/-) mice. Furthermore, DNA repair deficient XPC(-/-) mice, which are still able to repair DNA damage in actively transcribed genes, did not display any toxicity upon treatment with PhIP (100 p.p.m.). This suggests that transcription coupled repair of DNA damage (PhIP adducts) in active genes plays a crucial role in preventing the intestinal toxicity of PhIP. Finally, PhIP appeared to be carcinogenic for XPA(-/-) mice at subtoxic doses. Upon treatment of the mice for 6 months with 10 or 25 p.p.m. PhIP, significantly increased tumour incidences were observed after a total observation period of one year. At 10 p.p.m. only lymphomas were found, whereas at 25 p.p.m. some intestinal tumours (adenomas and adenocarcinomas) were also observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.