Related ArticlesThinking like a physicist: A multi-semester case study of junior-level electricity and magnetism Am. J. Phys. 80, 923 (2012) An item response curves analysis of the Force Concept Inventory Am. J. Phys. 80, 825 (2012) Rotational kinematics of a particle in rectilinear motion: Perceptions and pitfalls Am. J. Phys. 80, 720 (2012) Function plot response: A scalable system for teaching kinematics graphs Am. J. Phys. 80, 724 (2012) Comparing large lecture mechanics curricula using the Force Concept Inventory: A five thousand student study Am.The Colorado School of Mines (CSM) has taught its first-semester calculus-based introductory physics course (Physics I) using a hybrid lecture/Studio Physics format since the spring of 1997. Starting in the fall of 2007, we have been converting the second semester of our calculus-based introductory physics course (Physics II) to a hybrid lecture/Studio Physics format, beginning from a traditional lecture/lab/recitation course. In this paper, we document the stages of this transformation, highlighting what has worked and what has not, and the challenges and benefits associated with the switch to Studio Physics. A major goal in this study is to develop a method for secondary implementations of Studio physics that keeps the time and resource investments manageable. We describe the history of Studio at CSM and characterize our progress via several metrics, including pre/post Conceptual Survey of Electricity and Magnetism (CSEM) scores, Colorado Learning About Science Survey scores (CLASS), exam scores, failure rates, and a variety of qualitative observations. Results suggest that Studio has increased student performance and satisfaction despite an aggressive expansion of class sizes in the past few years. Gains have been concentrated mostly in problem-solving skills and exam performance (as opposed to conceptual survey gains), in contrast to what has sometimes been seen in other studies.
This paper presents preliminary hypotheses about the relationship between faculty goals for the introductory calculus-based physics course and their beliefs about student learning of problem solving. All faculty have problem solving as a major goal for their course. There appears to be however, an instructional paradox. When discussing how students learn to solve problems in their own courses, faculty indicate that reflective-practice skills are a necessary prerequisite, and that average students enter the course with these skills. When discussing general problem solving skills, however, faculty seem to believe that similar reflective-practice skills cannot be learned in an introductory physics course, and should be a long-term goal of university education.
Abstract.Creative thought and the ability to innovate are critical skills in industrial and academic careers alike. There exist attempts to foster creative skills in the business world, but little such work has been documented in a physics context. In particular, there are few tools available for those that want to assess the creativity of their physics students, making it difficult to tell whether instruction is having any effect. In this poster we outline a new elective course in the Colorado School of Mines physics department designed to develop creativity and innovation in physics majors. We present our efforts to assess this course formatively using tablet PCs and InkSurvey software, and summatively using the discipline-independent Torrance Tests of Creative Thinking. We also describe early work towards developing a physicsspecific instrument for measuring creativity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.