A commonly observed welding defect that characteristically occurs at high welding speeds is the periodic undulation of the weld bead profile, also known as humping. The occurrence of humping limits the range of usable welding speeds in most fusion welding processes and prevents further increases in productivity in a welding operation. At the present time, the physical mechanisms responsible for humping are not well understood. Thus, it is difficult to know how to suppress humping in order to achieve higher welding speeds. The objectives of this study were to identify and experimentally validate the physical mechanisms responsible for the humping phenomenon during high speed gas metal arc (GMA) welding of plain carbon steel. A LaserStrobe video imaging system was used to obtain video images of typical sequences of events during the formation of a hump. Based on these recorded video images, the strong momentum of the backward flow of molten metal in the weld pool that typically occurred during high speed welding was identified as the major factor responsible for the initiation of humping. Experiments with different process variables affecting the backward flow of molten weld metal were used to validate this hypothesis. These process variables included welding speed, welding position and shielding gas composition. The use of downhill welding positions and reactive shielding gases was found to suppress humping and to allow higher welding speeds by reducing the momentum of the backward flow of molten metal in the weld pool. This would suggest that any process variables or welding techniques that can dissipate or reduce the momentum of the backward flow of molten metal in the weld pool will facilitate higher welding speeds and productivity.
The dynamic resistance has been investigated during small scale resistance spot welding (SSRSW) of Ni sheets. Electrical measurements have been correlated with scanning electron microscope images of joint development. The results show that the dynamic resistance curve can be divided into the following stages based on physical change in the workpieces: asperity heating, surface breakdown, asperity softening, partial surface melting, nugget growth and expulsion. These results are also compared and contrasted with dynamic resistance behaviour in large scale RSW.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.