Nitrogen doping is a promising method of engineering the electronic structure of a metal oxide to modify its optical and electrical properties; however, the doping effect strongly depends on the types of defects introduced. Herein, we report a comparative study of nitrogen-doping-induced defects in Cu2O. Even in the lightly doped samples, a considerable number of nitrogen interstitials (Ni) formed, accompanied by nitrogen substitutions (NO) and oxygen vacancies (VO). In the course of high-temperature annealing, these Ni atoms interacted with VO, resulting in an increase in NO and decreases in Ni and VO. The properties of the annealed sample were significantly modified as a result. Our results suggest that Ni is a significant defect type in nitrogen-doped Cu2O.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.