A facile approach for preparation of photoluminescent (PL) carbon dots (CDs) is reported. The three resulting CDs emit bright and stable red, green and blue (RGB) colors of luminescence, under a single ultraviolet-light excitation. Alterations of PL emission of these CDs are tentatively proposed to result from the difference in their particle size and nitrogen content. Interestingly, up-conversion (UC)PL of these CDs is also observed. Moreover, flexible full-color emissive PVA films can be achieved through mixing two or three CDs in the appropriate ratios. These CDs also show low cytotoxicity and excellent cellular imaging capability. The facile preparation and unique optical features make these CDs potentially useful in numerous applications such as light-emitting diodes, full-color displays, and multiplexed (UC)PL bioimaging.
Truly fluorescent excitation-dependent carbon dots are prepared, and the relationship between their chemical composition and fluorescent emission is discussed. Furthermore, potential applications of the as-prepared carbon dots to multicolor bio-labeling and multidimodal sensing are demonstrated.
Long-lifetime room-temperature phosphorescence (RTP) materials are important for many applications, but they are highly challenging materials owing to the spin-forbidden nature of triplet exciton transitions. Herein, a facile, quick and gram-scale method for the preparation of ultralong RTP (URTP) carbon dots (CDs) was developed via microwave-assisted heating of ethanolamine and phosphoric acid aqueous solution. The CDs exhibit the longest RTP lifetime, 1.46 s (more than 10 s to naked eye) for CDs-based materials to date. The doping of N and P elements is critical for the URTP which is considered to be favored by a n→π* transition facilitating intersystem crossing (ISC) for effectively populating triplet excitons. In addition, possibilities of formation of hydrogen bonds in the interior of the CDs may also play a significant role in producing RTP. Potential applications of the URTP CDs in the fields of anti-counterfeiting and information protection are proposed and demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.