Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) targets multiple organs and causes severe coagulopathy. Histopathological organ changes might not only be attributable to a direct virus-induced effect, but also the immune response. The aims of this study were to assess the duration of viral presence, identify the extent of inflammatory response, and investigate the underlying cause of coagulopathy. Methods This prospective autopsy cohort study was done at Amsterdam University Medical Centers (UMC), the Netherlands. With informed consent from relatives, full body autopsy was done on 21 patients with COVID-19 for whom autopsy was requested between March 9 and May 18, 2020. In addition to histopathological evaluation of organ damage, the presence of SARS-CoV-2 nucleocapsid protein and the composition of the immune infiltrate and thrombi were assessed, and all were linked to disease course. Findings Our cohort (n=21) included 16 (76%) men, and median age was 68 years (range 41–78). Median disease course (time from onset of symptoms to death) was 22 days (range 5–44 days). In 11 patients tested for SARS-CoV-2 tropism, SARS-CoV-2 infected cells were present in multiple organs, most abundantly in the lungs, but presence in the lungs became sporadic with increased disease course. Other SARS-CoV-2-positive organs included the upper respiratory tract, heart, kidneys, and gastrointestinal tract. In histological analyses of organs (sampled from nine to 21 patients per organ), an extensive inflammatory response was present in the lungs, heart, liver, kidneys, and brain. In the brain, extensive inflammation was seen in the olfactory bulbs and medulla oblongata. Thrombi and neutrophilic plugs were present in the lungs, heart, kidneys, liver, spleen, and brain and were most frequently observed late in the disease course (15 patients with thrombi, median disease course 22 days [5–44]; ten patients with neutrophilic plugs, 21 days [5–44]). Neutrophilic plugs were observed in two forms: solely composed of neutrophils with neutrophil extracellular traps (NETs), or as aggregates of NETs and platelets.. Interpretation In patients with lethal COVID-19, an extensive systemic inflammatory response was present, with a continued presence of neutrophils and NETs. However, SARS-CoV-2-infected cells were only sporadically present at late stages of COVID-19. This suggests a maladaptive immune response and substantiates the evidence for immunomodulation as a target in the treatment of severe COVID-19. Funding Amsterdam UMC Corona Research Fund.
Objective-Dysregulation of inflammatory adipokines by the adipose tissue plays an important role in obesity-associated insulin resistance. Pathways leading to this dysregulation remain largely unknown. We hypothesized that the receptor for advanced glycation end products (RAGE) and the ligand N ε -(carboxymethyl)lysine (CML) are increased in adipose tissue and, moreover, that activation of the CML-RAGE axis plays an important role in obesity-associated inflammation and insulin resistance. Approach and Results-In this study, we observed a strong CML accumulation and increased expression of RAGE in adipose tissue in obesity. We confirmed in cultured human preadipocytes that adipogenesis is associated with increased levels of CML and RAGE. Moreover, CML induced a dysregulation of inflammatory adipokines in adipocytes via a RAGE-dependent pathway. To test the role of RAGE in obesity-associated inflammation further, we constructed an obese mouse model that is deficient for RAGE (ie, RAGE . RAGE-mediated trapping in adipose tissue provides a mechanism underlying CML accumulation in adipose tissue and explaining decreased CML plasma levels in obese subjects. Decreased CML plasma levels in obese individuals were strongly associated with insulin resistance. endothelial cells, and macrophages. 9 RAGE is initially identified as the receptor for advanced glycation end products (AGEs), 10 but, in addition to AGEs, RAGE also interacts with multiple members of the proinflammatory S100/calgranulin family and high motility group box 1 protein. Conclusions-RAGE-mediated9,11 Binding of these ligands to RAGE leads to activation of signaling cascade and induction of nuclear factor-κB, which can subsequently lead to the production of inflammatory mediators.9,12 Therefore, the potential role of RAGE in the regulation of inflammation suggests that RAGE might be an important mechanism contributing to obesity-associated dysregulation of adipokines and development of insulin resistance. N ε -(carboxymethyl)lysine (CML) is a major AGE and is an important ligand for RAGE.10 CML is formed on proteins by nonenzymatic glycation and oxidation reactions. 13Alternative routes for CML formation have been described, including lipid peroxidation of polyunsaturated fatty acids.14,15 In fact, lipid peroxidation is a more important source for CML formation than glycoxidation reactions.14 Because of the reaction mechanism, CML formation is increased under hyperglycemic and hyperlipidemic conditions. The adipose tissue in obese conditions is characterized by increased levels of fatty acids, lipid peroxidation, and oxidative stress. Therefore, we can deduce that obesity is also a condition in which CML formation is increased and where CML can interact with RAGE. However, the role of CML-RAGE in obesity, obesity-associated inflammation, and insulin resistance has to date not been investigated.The aim of this study was to investigate the role of CML-RAGE axis in obesity-associated inflammation and insulin resistance. In the present study, we showed in huma...
Type II secretory phospholipase A2 (sPLA2) is a cardiovascular risk factor. We recently found depositions of sPLA2 in the necrotic center of infarcted human myocardium and normally appearing cardiomyocytes adjacent to the border zone. The consequences of binding of sPLA2 to ischemic cardiomyocytes are not known. To explore a potential effect of sPLA2 on ischemic cardiomyocytes at a cellular level we used an in vitro model. The cardiomyocyte cell line H9c2 or adult cardiomyocytes were isolated from rabbits that were incubated with sPLA2 in the presence of metabolic inhibitors to mimic ischemia-reperfusion conditions. Cell viability was established with the use of annexin V and propidium iodide or 7-aminoactinomycin D. Metabolic inhibition induced an increase of the number of flip-flopped cells, including a population that did not stain with propidium iodide and that was caspase-3 negative. sPLA2 bound to the flip-flopped cells, including those negative for caspase-3. sPLA2 binding induced cell death in these latter cells. In addition, sPLA2 potentiated the binding of C-reactive protein (CRP) to these cells. We conclude that by binding to flip-flopped cardiomyocytes, including those that are caspase-3 negative and presumably reversibly injured, sPLA2 may induce cell death and tag these cells with CRP.
SummaryInflammation is characterized by endothelium that highly expresses numerous adhesion molecules to trigger leukocyte extravasation. Central to this event is increased gene transcription. Small Rho-GTPases not only control the actin cytoskeleton, but are also implicated in gene regulation. However, in inflammation, it is not clear how this is regulated. Here, we show that the guanine-nucleotide exchange factor Trio expression is increased upon inflammatory stimuli in endothelium. Additionally, increased Trio expression was found in the vessel wall of rheumatoid arthritis patients. Trio silencing impaired VCAM-1 expression. Finally, we excluded that Trio-controlled VCAM-1 expression used the classical NFκB or MAP-kinase pathways, but rather acts on the transcriptional level by increasing phosphorylation and nuclear translocalization of Ets2. These data implicate Trio in regulating inflammation and provide novel targets for therapeutic purposes to treat inflammatory diseases such as rheumatoid arthritis.
Background: Compelling evidence has shown cardiac involvement in COVID-19 patients. However, the overall majority of these studies use data obtained during the first wave of the pandemic, while recently differences have been reported in disease course and mortality between first-and second wave COVID-19 patients. The aim of this study was to analyze and compare cardiac pathology between first-and second wave COVID-19 patients. Methods: Autopsied hearts from first-(n = 15) and second wave (n = 10) COVID-19 patients and from 18 non-COVID-19 control patients were (immuno)histochemically analyzed. CD45+ leukocyte, CD68+ macrophage and CD3+ T lymphocyte infiltration, cardiomyocyte necrosis and microvascular thrombosis were quantified. In addition, the procoagulant factors Tissue Factor (TF), Factor VII (FVII), Factor XII (FXII), the anticoagulant protein Dipeptidyl Peptidase 4 (DPP4) and the advanced glycation end-product N( ε )-Carboxymethyllysine (CML), as markers of microvascular thrombogenicity and dysfunction, were quantified. Results: Cardiac inflammation was significantly decreased in second wave compared to first wave COVID-19 patients, predominantly related to a decrease in infiltrated lymphocytes and the occurrence of lymphocytic myocarditis. This was accompanied by significant decreases in cardiomyocyte injury and microvascular thrombosis. Moreover, microvascular deposits of FVII and CML were significantly lower in second wave compared to first wave COVID-19 patients. Conclusions: These results show that in our cohort of fatal COVID-19 cases cardiac inflammation, cardiomyocyte injury and microvascular thrombogenicity were markedly decreased in second wave compared to first wave
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.