Colloidal manganese-doped semiconductor nanocrystals have been developed that show pronounced intrinsic high-temperature dual emission. Photoexcitation of these nanocrystals gives rise to strongly temperature dependent luminescence involving two distinct but interconnected emissive excited states of the same doped nanocrystals. The ratio of the two intensities is independent of nonradiative effects. The temperature window over which pronounced dual emission is observed can be tuned by changing the nanocrystal energy gap during growth. This unique combination of properties makes this new class of intrinsic dual emitters attractive for ratiometric optical thermometry applications.
Colloidal Mn2+-doped CdSe quantum dots showing long excitonic photoluminescence decay times of up to τexc = 15 μs at temperatures over 100 K are described. These decay times exceed those of undoped CdSe quantum dots by ∼103 and are shown to arise from the creation of excitons by back energy transfer from excited Mn2+ dopant ions. A kinetic model describing thermal equilibrium between Mn2+ 4T1 and CdSe excitonic excited states reproduces the experimental observations and reveals that, for some quantum dots, excitons can emit with near unity probability despite being ∼100 meV above the Mn2+ 4T1 state. The effect of Mn2+ doping on CdSe quantum dot luminescence at high temperatures is thus completely opposite from that at low temperatures described previously.
Multiple energy scales contribute to the radiative properties of colloidal quantum dots, including magnetic interactions, crystal field splitting, Pauli exclusion, and phonons. Identification of the exact physical mechanism which couples first to the dark ground state of colloidal quantum dots, inducing a significant reduction in the radiative lifetime at low temperatures, has thus been under significant debate. Here we present measurements of this phenomenon on a variety of materials as well as on colloidal heterostructures. These show unambiguously that the dominant mechanism is coupling of the ground state to a confined acoustic phonon, and that this mechanism is universal.
During immune surveillance and inflammation, leukocytes exit the vasculature through transient openings in the endothelium without causing plasma leakage. However, the exact mechanisms behind this intriguing phenomenon are still unknown. Here we report that maintenance of endothelial barrier integrity during leukocyte diapedesis requires local endothelial RhoA cycling. Endothelial RhoA depletion in vitro or Rho inhibition in vivo provokes neutrophil-induced vascular leakage that manifests during the physical movement of neutrophils through the endothelial layer. Local RhoA activation initiates the formation of contractile F-actin structures that surround emigrating neutrophils. These structures that surround neutrophil-induced endothelial pores prevent plasma leakage through actomyosin-based pore confinement. Mechanistically, we found that the initiation of RhoA activity involves ICAM-1 and the Rho GEFs Ect2 and LARG. In addition, regulation of actomyosin-based endothelial pore confinement involves ROCK2b, but not ROCK1. Thus, endothelial cells assemble RhoA-controlled contractile F-actin structures around endothelial pores that prevent vascular leakage during leukocyte extravasation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.