The light-harvesting apparatus of photosynthetic organisms is highly optimized with respect to efficient collection of excitation energy from photons of different wavelengths and with respect to a high quantum yield of the primary photochemistry. In many cases the primary donor is not an energetic trap as it absorbs hypsochromically compared to the most red-shifted antenna pigment present (long-wavelength antenna). The possible reasons for this as well as for the spectral heterogeneity which is generally found in antenna systems is examined on a theoretical basis using the approach of thermal equilibration of the excitation energy. The calculations show that long-wavelength antenna pigments and heterogeneous absorption bands lead to a concentration of excitons and an increased effective absorption cross section. The theoretically predicted trapping times agree remarkably well with experimental data from several organisms. It is shown that the kinetics of the energy transfer from a long-wavelength antenna pigment to a hypsochromically absorbing primary donor does not represent a major kinetic limitation. The development of long-wavelength antenna and spectrally heterogeneous absorption bands means an evolutionary advantage based on the chromatic adaptation of photosynthetic organelles to spectrally filtered light caused by self-absorption.
Excitation energy trapping and charge separation in Photosystem II were studied by kinetic analysis of the fast photovoltage detected in membrane fragments from peas with picosecond excitation. With the primary quinone acceptor oxidized the photovoltage displayed a biphasic rise with apparent time constants of 100-300 ps and 550±50 ps. The first phase was dependent on the excitation energy whereas the second phase was not. We attribute these two phases to trapping (formation of P-680(+) Phe(-)) and charge stabilization (formation of P-680(+) QA (-)), respectively. A reversibility of the trapping process was demonstrated by the effect of the fluorescence quencher DNB and of artificial quinone acceptors on the apparent rate constants and amplitudes. With the primary quinone acceptor reduced a transient photoelectric signal was observed and attributed to the formation and decay of the primary radical pair. The maximum concentration of the radical pair formed with reduced QA was about 30% of that measured with oxidized QA. The recombination time was 0.8-1.2 ns.The competition between trapping and annihilation was estimated by comparison of the photovoltage induced by short (30 ps) and long (12 ns) flashes. These data and the energy dependence of the kinetics were analyzed by a reversible reaction scheme which takes into account singlet-singlet annihilation and progressive closure of reaction centers by bimolecular interaction between excitons and the trap. To put on firmer grounds the evaluation of the molecular rate constants and the relative electrogenicity of the primary reactions in PS II, fluorescence decay data of our preparation were also included in the analysis. Evidence is given that the rates of radical pair formation and charge stabilization are influenced by the membrane potential. The implications of the results for the quantum yield are discussed.
A PS I membrane preparation from a PS II deficient mutant of Synechocystis sp. PCC 6803 (psb DI/DII/C) was investigated by picosecond photovoltage and fluorescence measurements. The photovoltage kinetics show two distinct phases. At low excitation energies the fast phase correlates with the fluorescence decay time constant of 22 +/- 4 ps. This phase is ascribed to the trapping of excitons as described by the reaction (AntiP700)* A0-->AntiP700+A0-. In addition to this phase, the photovoltage displays a second rising phase of smaller amplitude with a time constant of 50 +/- 15 ps. We assign the latter phase to further electron transfer from A0 to the secondary acceptor, A1. Assuming the protein as a homogeneous dielectric, our results suggest that the transmembrane distance A0-A1 spans only a small part (20 +/- 8%) of the distance P700-A1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.