We report on the measurement of the twoneutrino double-beta decay half-life of 130 Te with the CUORE-0 detector. From an exposure of 33.4 kg year of TeO 2 , the half-life is determined to be T 2ν 1/2 = [8.2 ± 0.2 (stat.) ± 0.6 (syst.)] × 10 20 year. This result is obtained after a detailed reconstruction of the sources responsible for the CUORE-0 counting rate, with a specific study of those contributing to the 130 Te neutrinoless double-beta decay region of interest.
Neutrinoless double-beta (0νββ) decay is a hypothesized lepton-number-violating process that offers the only known means of asserting the possible Majorana nature of neutrino mass. The Cryogenic Underground Observatory for Rare Events (CUORE) is an upcoming experiment designed to search for 0νββ decay of 130 Te using an array of 988 TeO 2 crystal bolometers operated at 10 mK. The detector will contain 206 kg of 130 Te and have an average energy resolution of 5 keV; the projected 0νββ decay half-life sensitivity after five years of live time is 1.6 × 10 26 y at 1σ (9.5 × 10 25 y at the 90% confidence level), which corresponds to an upper limit on the effective Majorana mass in the range 40-100 meV (50-130 meV). In this paper we review the experimental techniques used in CUORE as well as its current status and anticipated physics reach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.