A noncommutative negative order AKNS (NC-AKNS(-1)) equation is studied. To show the integrability of the system, we present explicitly the underlying integrable structure such as Lax pair, zero-curvature condition, an infinite sequence of conserved densities, Darboux transformation (DT) and quasideterminant soliton solutions. Moreover, the NC-AKNS(-1) equation is compared with its commutative counterpart not only on the level of nonlinear evolution equation but also for the explicit solutions.
Higher-order nonlinear evolution equations are important for describing the wave propagation of second- and higher-order number of fields in optical fiber systems with higher-order effects. One of these equations is the coupled complex modified Korteweg–de Vries (ccmKdV) equation. In this paper, we study noncommutative (nc) generalization of ccmKdV equation. We present Darboux and binary Darboux transformations (DTs) for the nc-ccmKdV equation and then construct its Quasi-Grammian solutions. Further, single and double-hump soliton solutions of first- and second-order are given in commutative settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.